

 әшои!

-риом әчł и! ио!̣әе әуеұ

ZOZ •d ‘GOOZ ‘ue»о||еН،O)
'sио!!

- extended understanding through mapping mathematical models to real world phenomena,
- creation of concepts and relations through a combination of diagrams, symbols, and language
- extended reasoning through a combination of diagrams, symbols, and language,
creation of a quantitative, predictive model that unifies previously disparate phenomena,
- comprehension of the works of others both through writings and conversation,
- written exposition of the unifying model

Implicit in this is the natural use of mathematics in context that serves to:

- motivate one to learn and use mathematics by placing it in one of its most valuable and enjoyable settings (Einstein's quote about "difficulties in Mathematics" notwithstanding),
- provide understanding and unification of phenomena that surpasses others (including simulations) through the use of explicit visual statements in the language of patterns
- give meaning and value to otherwise abstract pattern manipulation.

These are basic components of mathematical and scientific literacy that are often missing in secondary education, difficult to acquire in short time, yet are fundamental to STEM studies and careers. The pages that follow investigate these precepts in depth to make explicit not only key aspects of how they apply to gaining scientific and mathematical literacy, but also to conclude that an integrated setting not only fosters the natural motivations of both learning mathematics and using it to understand and unify scientific phenomena, but also develops lasting value and favorable perspectives that foster deeper and further learning and use

Science and Mathematics are Fundamentally Linked

At the highest levels of literacy, mathematics makes explicit both quantitatively and qualitatively the underlying patterns of science, science gives grounded meaning to components of the patterns, and the combination creates our resulting perceptions of reality (Pearson, Moje, \& Greenleaf, 2010, p.459) (Wellington \& Osbourne, 2001, pp.138-140). O'Halloran (2005) explained the depths to which representation and meaning making link mathematics and science:

The new approach advocated by Decartes proved to be significant because Newton and others created a movement which involved a new representation of the physical world using new semiotic tools. In this movement, matter and perceptual data were re-admitted by Newton, bu in a new mathematicized form ... (p.57)

Newton's new semiotic constructions explained the visible world through invisible properties which were made 'real' or 'concrete' through mathematical symbolic description. One key to this success was that the mathematical symbolism, the visual images, and language worked this success was that the mathema
together [emphasis added]. (p. 57)

Sherin (2001) emphasized this linkage between meaning making in both mathematics (symbolic) and science (conceptual) at the detailed level of symbolic forms in the following way: "In contrast, the schemata associated with symbolic forms [emphasis added] are conceptual schemata, in which the structure corresponds to an understanding of conceptual relations or structure in the world [emphasis added]." (p. 497)
Common Core State Standards for Mathematics acknowledged the essential nature of this link in the introduction of high school standards by stressing the importance of modeling via mathematics both as a category that cuts across all other conceptual categories and as a standard mathematical practice (National Governors Association Center \& Council of Chief State Schools Officers, 2010, p. 57). The
(0LG-69g dd) 'səэиә!

 эедя

иоиеэпрә sэџешәциеш

(z9g -d) sessep

ssəad Kı!sıəл!un uədo

$\bar{\varepsilon}+\mathrm{t}^{2}$. $-6 \angle \star$ '($ا$) $6\llcorner$ 'ио!

L-67L6-g10

Inf'6St/LL6G/8Zદ/म

- wnnuḷuoo : N

Goldstone, Landy, and Son (2008) emphasized the perception aspect of this last observation in the interpretation of results of their study focused on grounded cognition and formation of transportable knowledge and skills:

A second series shows that even when students are solving formal algebra problems, they are greatly influenced by non-symbolic perceptual grouping factors. We interpret both results as showing that high-level cognition that might seem to involve purely symbolic reasoning is actually driven by perceptual processes. The educational implication is that instruction in science and mathematics should involve not only the teaching of abstract rules and equations but also training students to perceive and interact with the world. (p. 2)

Sherin (2001) expressed similar sentiments in literacy terms based on the concept of symbolic forms that associate symbolic templates and conceptual meaning as entries in a sort of crossed indexed dictionary facilitating perception and meaning:
... successful physics students learn to express a moderately large vocabulary of simple ideas in equations and to read these same ideas out of equations. I call the elements of this vocabulary symbolic forms. Each symbolic form associates a simple conceptual schema with an arrangement of symbols in an equation. Because they possess these symbolic forms, students can take a conceptual understanding of some physical situation and express that understanding in an equation. Furthermore they can look at an equation and understand it as a particular description of a physical system. (p. 482)

Sherin (2001) goes on to highlight at various points the importance of connecting symbolism to specific contexts and the subtle effect it has on activating symbolic forms via cues, both functional and situational, as is necessary to both understand symbolic patterns at an abstract level and simultaneously use them to deeper understand a new context:

With regard to mechanism, the key question concerns when and how a symbolic form is cued to an active state. I describe only simple mechanisms and then only in broad strokes. First a form can be activated by being recognized in an equation. A person looks at an equation and sees the symbolic form there. Alternatively, an understanding of the physical situation to be described may activate a form. The situation is understood, and then this understanding in some manner activates a particular symbolic form. (p. 504)

Even if students possess many of the necessary symbolic forms, however, getting these elements engaged in the right places may not be a trivial instructional goal. Students must learn to adopt particular stances to individual physics expressions ... (p. 522)

Notice that the value of grounding abstract mathematical symbolism is only achieved when mathematics is being used in context to make explicit and understand underlying patterns associating the symbolism with perceptually meaningful aspects of the world. An immediate conclusion is that (a) the more fundamentally perceptible the pattern, (b) the more basic the symbolism, and (c) the more meaningful and complete the association, then (d) the more deeply internalized the symbolic form may be embedded, and (e) the more easily activated thereafter , return to the perception and deep embedding aspects of this theme below after a few observations on the meaning and value of the association.

References

Adams, R., \& Victor, M. (1993). Principles of neurology. Fifth edition. New York, NY: McGraw-Hill.
Arcavi, A. (1999). The role of visual representations in the learning of mathematics. Proceedings of the Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Cuernavaca, Morelos, Mexico: Hitt, F. \& Santos, M. (Eds.), 55-80 http://files.eric.ed.gov/fulltext/ED466382.pdf

Barrett, L., (2017). How Emotions Are Made. New York, NY: Houghton Mifflin Harcourt Publishing Co.
Cole, R., (1976). Perspective for Artists. New York: Dover Publications, Inc. (Original work published 1921)

Dill, K. (Producer). (2013, October 22). The protein folding problem: a major conundrum of science TED TEDx. Podcast retrieved from http://www.youtube.com/watch?v=zm-3kovWpNQ

Füster, J. (1999). Memory in the Cerebral Cortex: An empirical approach to neural networks in the human and nonhuman primate. Cambridge, MA: MIT Press.

Gibson, E. (1969). Principles of perceptual learning and development. New-York, NY: Prentice-Hall.
Goldstone, R., Landy, D., \& Son, J. (2008). A Well Grounded Education: The role of perception in science and mathematics. In M.DeVega, A.Glenberg, \& A.Graesser (Eds.), Symbols, embodiment, and meaning (327-355). New York, NY: Oxford University Press.

Greenlee, M. \& Tse, P. (2008). Functional Neuroanatomy of the Human Visual System: A Review of Greeniee, M. \& Tse, P. (2008). Functional Neuroanatomy of the Human Visual System: A
Functional MRI Studies. In B. Lorenz \& A. Moore (Eds.) Pediatric Ophthalmology, NeuroOphthalmology, Genetics, (119-138). New York, NY: Springer-Verlag.
Heath, T. (1956). Euclid: The Thirteen Books of The Elements (2nd Ed.) (Vol. 2). New York, NY: Dover Publications, Inc.

Jillette, P. (Producer), \& Teller, R. (Director). (2013). Tim's vermeer [Motion picture]. United States: Sony Pictures

Kellman, P., Massey, C., Son, J. (2009). Perceptual learning modules in mathematics: enhancing student's pattern recognition, structure extraction, and fluency. Topics in Cognitive Science, 2(2), 285 305. http://onlinelibrary.wiley.com/doi/10.1111/j.1756-8765.2009.01053.x/full

Krajcik, J (2013). The Next Generation Science Standards: A Focus on Physical Science. Science and Children, 50(7), 7-15. http://www.nsta.org/publications/download. aspx? id=Z349URi8cV5SO3O7ownoEdX!plus!JkX5xkbplVbszxMmozs=

Lakoff, G., \& Nuñez, M. (2001). Where mathematics comes from: How the embodied mind bring mathematics into being. New York, NY: Basic Books

Leonhardt, U., \& Philbin, T. (2010). Geometry and Light: The Science of Invisibility. New York, NY: Dover Publications, Inc.
（90t

 ио！̣эnıци！sэ！
：（LLOZ＇「促

Once again, the value is added in the use of mathematics to understand and affect the real world, primarily because it is being used in a highly relevant and meaningful context.

Mathematics Provides the Quantitative Language of Patterns

Conversely, mathematics provides to science the language "specifically designed as a semiotic resource to describe patterns which can be rearranged for the solution to problems" (O'Halloran, 2005, p. 118), providing concise symbolic representations that extend not only meanings, but also methods of thinking, both qualitatively and quantitatively. O'Halloran (2005) explained in great detail from which the following synopses give some sense:

The textual organization of mathematical symbolism is sophisticated and highly formalized in order to facilitate the economical encoding of relations which permits immediate engagement with the experiential and logical meaning ... (p.96)

The symbolism developed a functionality through new grammatical systems which permitted expansions beyond that capable with language, but at the same time it depended upon employing certain linguistic elements and a range of grammatical strategies inherited from language. ... (p. 104)

With the development of symbolic algebra, attention turned to generalized descriptions of relations using algebraic methods. The success of these descriptions meant that mathematica symbolism developed as a semiotic resource with grammatical systems which were unique to that resource. These systems developed in accordance with the aim of mathematics: the description of patterns and means to solve problems relating to these descriptions. (p. 121)

The symbols of mathematics provide an exquisitely structured language of relations, operations, and pattern structures designed to make immediately visible and comprehensible patterns and sequences of patterns that extend reasoning and cognition to a new dimension. Again, O'Halloran (2005) explained in detail with examples using a level-of-abstraction (or rank) mechanism called rankshifting from which the following extract gives some flavor:

The potential for rankshifted configurations of Operative processes and participants is one of the key factors in the success of mathematical symbolism because this strategy preserves process/participant structures which may be reconfigured for solution to problems. This is a significant point in understanding how the grammar of mathematical symbolism is functionally organized to fulfill the goal of mathematics: to order, to model situations, to present patterns, to solve problems, and to make predictions. ... The degree of rankshifting found in mathematical symbolism exceeds that found in language. ... At each stage, the process/participant configuration is preserved so that the expression can be rearranged and simplified. This is an important grammatical strategy in the evolution of mathematical symbolism as the semiotic which is used to solve problems

This visibly explicit, concise encoding of pattern structure and sequence is crucial, as mentioned above, in order to visibly cache the pattern (and/or sequence of patterns), so as to focus attention to the complete pattern (or sequence), and extend comprehension

An example from the third lesson of the scale model building project below involves diagrams and the following reasoning symbology to justify the conclusion that triangles at the viewpoint in the photo and the real world object are similar (have the same shape)

If two triangles have one angle equal to one angle and the sides about the equal angles proportional, the triangles will be equiangular and will have those angles equal which the corresponding sides subtend.

Let $A B C, D E F$ be two triangles having one angle $B A C$ equal to one angle $E D F$ and the sides about the equal angles proportional, so that,
as $B A$ is to $A C$, so is $E D$ to $D F$;
I say that the triangle $A B C$ is equiangular with the triangle $D E F$, and will have the angle $A B C$ equal to the angle $D E F$, and the angle $A C B$ to the angle $D F E$.

 †0 чэеә ұечł К

 әЧł Ч!!М 'Kıی!

 ؛ HG of $a \nexists$ s! os ' ∂V of s! $V G$ se 'дәчfıny pue ' $A H$ ot Hy s! os ' V O ot s! $\supset A$ se

'みеч̆ os 'jeuo!nododd

- G^{5} NOILISOdOZ ${ }_{d}$
$\mathrm{S} \cdot \mathrm{t} \cdot \mathrm{IL}$]
IA YOOq

of $7 \supset$ s! os ' $V Q$ of s! $a g$ se 'fеч7
VA ! วЯV әбие! әч

' τ NOILISOdOyd
z ' $I \cdot I \Delta$
IL YOOG

automatically by our higher levels of perceptual processing. We consider this in more detail in our nex section where we examine how these key elements of mathematics and scientific context combine to create not only meaning, but reality itself in the mind of the perceiver in order that we may bring these components to the table in the right combination and sequence to ignite the synergistic integration in the mind of the student.

Science Combined with Mathematics Create Reality

Barrett (2017) explained in detail the importance, subtlety, and nature of the perceptual processing that gives a hint of our goal of weaving sensory, symbolic, diagrammatic, and literary representations together into the fabric of reality autonomously created as we experience the world around us:

Without concepts, you'd experience a world of ever-fluctuating noise. Everything you ever encountered would be like everything else. You'd be experientially blind, like when you first saw the blobby picture in chapter 2, but permanently so. You'd be incapable of learning ${ }^{5}$.

All sensory information is a massive, constantly changing puzzle for our brain to solve The objects you see, the sounds you hear, the odors you smell, the touches you feel, the flavors you taste, and the interoceptive sensations you experience as aches and pains and affect ... they all involve continuous sensory input signals that are highly variable and ambiguous as they reach your brain. Your brain's job is predict them before they arrive, fill in missing details, and find regularities where possible, so you experience a world of objects people, music, and events, not the blooming, buzzing, confusion' hat is really out there

To achieve this magnificent feat, your brain employs concepts to make the sensory signals meaningful, creating an explanation for where they came from, what they refer to in the world, and how to act on them. Your perceptions are so vivid and immediate that they compel you to believe that you experience the world as it is, when you actually experience a world of your own construction. Much of what you actually experience as the outside world begins in your head. When you categorize using concepts, you go beyond the information available, just as you did when you perceived a bee within blobs. (pp. 85-86)

So what's happening in your brain when you categorize? You are not finding similaritie in the world, but creating them. When your brain needs a concept, it constructs one on the fly, mixing and matching from a population of instances from your past experience, to best fit your goals in a particular situation. (p. 92)

As compelling and as rich with implication as this is for integrating science and mathematics in education, there is a specific aspect that has not yet been adequately acknowledged. The crucia influence of linking representational diagrams, symbols, concepts, and associated meaning together with words as Barrett (2017) explained:

Some concepts are learned without words, but words confer the distinct advantages to a developing conceptual system. A word might begin as a mere stream of sounds to the infant, just one part of the whole statistical learning package, but it quickly becomes an invitation for the infant to create similarities among diverse instances. ... (p. 98)

Words encourage infants to form goal-based concepts by inspiring them to represent things as equivalent. In fact, studies show that infants can more easily learn a goal-based concept, given a word, than a concept defined by similarity without a word. ${ }^{31}$ (p. 98)

Words encourage infants to search for similarities beyond the physical, similarities that act like a mental glue for concepts. ... (p. 100)

Scale Model Building Error Analysis GeoGebra Activity

भ！！әәне рие puełsıәрй

 ККэехә si siчı＇əәpou э！！ әıпэ！

 о sןепи

мә！ィ риом э！！！uә！̣s әчł ә！！！ol s6uи̣

$0 \varepsilon^{\prime} l=5 \forall / \exists \forall$
$6 \subseteq c^{\circ} \cdot=8 \forall / Q \forall$

$966^{\circ}=8 \forall /$ ว
$90 \angle 0=3 \forall /$ วя

： Z मed sə｜6ue！uı del！w！

$9 . \mathrm{l}=\mathrm{Q} \nabla / \square \forall$
$9 \cdot L=3 \forall / \exists \forall$

$960=\square \forall / \exists \square$

$96.0=9 \forall / 0 \mathrm{~g}$
29．0 $=$ Э

乙 pue Ł sə！！！ı！
found to be crucial to expertise in a variety of domains such as science problem solving ... , and mathematics ... (p. 287)

Eleanore Gibson, who pioneered the field of PL (for a review, see Gibson 1969), defined it as "an increase in the ability to extract information from the environment, as a result of experience ..." (p. 3). She described a number of particular ways in which information extraction improves, including both the discovery and fluency effects noted above. Of particular interest to Gibson was "... discovery of invariant properties which are in correspondence with physical variables" (Gibson 1969, p. 81). This view of PL applies directly to many real-world learning problems although Gibson did not mention mathematics learning, her examples included ... (p. 287)
... It is common to consider PL as described by Fahle and Poggio (2002): "... parts of the learning process that are independent from conscious forms of learning and involve structural and/or functional changes in the primary sensory cortices.

They study the effects of three perceptual learning module (PLM) interventions for middle and high school students on various representations of linear functions to conclude (Kellman, Massey, \& Son, 2009):

The study of PL interventions in education and training has barely begun, yet the promise is already clear. PL techniques have the potential to address crucial, neglected dimensions of learning. These include selectivity and fluency in extracting information, discovering important relations, and mapping structure across representations. Each PLM described here addressed an area of mathematics learning known to be problematic for many students. In each case, a relatively short intervention produced major and lasting gains, and in each case the learning transferred to key mathematical tasks that differed from the training task. (p. 301)

Integrated mathematics and science education can be most effective when extending these perceptual learning modules into sequences of lessons centered around developing and helping found the various perceptual facets of full-featured scientific models, being explicit about the roles of science, mathematics, literacy, and technology in order to showcase resulting deeper understanding and ability to effect positive and lasting change in the world.

Mathematical and Scientific Literacy

Mathematical and scientific literacy captures the ability to perceive, reason with, and expound, both verbally and in written form, on the models we use in a profound way to make sense of the world around us. It is at the core of both mathematics and science education. Indeed, Pearson, Moje, and Greenleaf (2010) noted "Scientific literacy has been the rallying cry for science education reform for the last 20 years ..." further specifying the science inquiry viewpoint of scientific literacy that:
\ldots makes explicit connections among the language of science, how science concepts are rendered in various text forms, and resulting scientific knowledge (5). Researchers guided by this latter view are concerned with how students develop the proficiencies needed to engage in scientific inquiry, including how to read, write and reason with the language, texts, and dispositions of science. The ability to make meaning of oral and written language representations is central to the robust science knowledge and full participation in public discourse about science. (p. 459)

Wellington and Osbourne described it this way (2001):

Cole: Perspective for Artists

THE PRINCIPLE OF PERSPECTIVE IN THEORY 19
glass (Fig. 4), is also determined by these rays, and that the near one looks longer than the distant one.

We have seen that the height and width of objects as they appear to us is determined by the converging rays from their extremities to our eye; that objects really equal in size appear shorter and narrower when further away.

Depths of objects on a level
surface traced.-It only remains to find out that the depths on a (hath 4.-Two pencils, glass, and receding surface are governed by eye, as seen from above (i.e. ground the same laws.

Fig. 5 represents three pinheads in a row, one behind the other on the far side of the glass from the position of the eye. Notice, however, that the eye is above the pins (i.e. looking down on them)

Fig. 5.-Side view (i.e. elevation) of the painter's eye, an upright Fig. 5.-Side view (i.e. elevation) of the painter's eye, an upright
glass, and a level board on which three pins are equally spaced.
and so the points where their rays cut the glass are one above the other in regular order, the nearest pin (3) appearing the lowest down on the glass.
Since the pins were placed at equal distances apart, their spacing as shown on the glass, would also fix the depths of the ground

Клеョ 山е»s

 би！

 o！̣o！məs e se killotiq

：ио！̣еопрә әэиә！эs pue sэ！ңешәцңеш

 әЧł Оㄱ әכиәи！

－qıede

yielding higher confidence, value of content, and effort put forth for both mathematics and science (Redmond et al., 2011, p. 403).
Newcombe (2010) highlighted the importance of spatial thinking in STEM, gives evidence to support its malleability, and suggested enriching activities for primary grades that overlap directly, naturally, and are extended by integrating mathematics and science: reading challenging content, imagining and visualizing trajectories, working with spatial puzzles, using spatial language, using maps and models, and developing analogies (Newcombe, 2010, p.34).

Kellman, Moje, and Son summarize their linear measurement PLM results noting that it "produced significant improvement in the sixth grade intervention group" and furthermore that they "achieved nearly identical scores on a delayed posttest administered 4.5 months later, indicating that their learning gains were fully maintained" (Kellman, Moje, \& Son, 2009, p. 300). Again, early changes in perception produce lasting effect in understanding and cannot help but change attitudes

Integrating mathematics and science education may not replicate these techniques in their intensity, or entirety, but can to some extent allow a more inherent activation of these "crucial, neglected dimensions of learning that "include selectivity and fluency in extracting information, discovering important relations, and mapping structure across representations." (Kellman, Moje, \& Son, 2009, p. 301).

Starting early may also help avoid the negative perception that "teachers, administrators, and parents worry whether students are really learning or simply playing" when "students greatly enjoy integrated lessons" without any directly visible and easily quantifiable gains (Redmond et al., 2011, p.400). suppose this too, in analogy with mathematical symbolism, is a matter of educational perceptual learning based in discovery and fluency.

Build Syntactic Form Dictionary Entries

Building entries in the dictionary of relational meanings, accessible through various indices including symbolic and experiential patterns, a key to fluent literacy and a major goal of integrated mathematic and science education. Fundamental entries in this dictionary may be best identified with the basic symbolic forms described by Sherin (2001). In this article, Sherin presented "a semi-exhaustive list of symbolic forms, along with a number of brief examples" (Sherin, 2001, p. 505) clustered by similarity meaning or function. For example, his "competing terms cluster" contains symbolic forms with parts that contribute or compete at the same level or in a similar way (Sherin, 2001, p. 506)

Symbolic Form	Symbol Pattern
Competing Terms	$\square \pm \square \pm \square \ldots$
Opposition	$\square-\square$
Balancing	$\square=\square$
Canceling	$0=\square-\square$

These symbolic forms are fundamental to the application of mathematical symbolism to patterns. Elementary students are expected to internalize many of these fundamental these before secondary education begins. However, beyond these basic symbolic forms are fixed points of conceptualization l'll call symbolic idioms. Symbolic idioms associate deeper embedded meaning involving multiple

Scale Model Building Reading 2

Cole (1921/1976) Perspective For Artists
pp. 17-19.
Cole: Persepective For Artists

PART I

NATURE'S PERSPECTIVE AS SEEN AND USED

DAILY BY PAINTERS

CHAPTER I

the principle of perspective in theory
"If you do not rest on the good foundation of nature, you will labour with little honour and less profit."-Leonardo da Vinci.

INEAR Perspective is a study that deals with the appearance of objects ${ }^{1}$ as regards their size and the direction of their lines seen at varying distances and from any point of view. When practising it we are not concerned with their apparent changes of colour or tone, though those also help us to recognise the distance separating us, or that of one object from another.
Visual rays.-The Theory of Perspective is based on the fact that from every point of an object that we are looking at, a ray of light

Fig. 1.
is carried in a straight line to our eye. ${ }^{2}$ By these innumerable rays we gain the impression of that object (Fig. 1).
1 "Objects" is a mean word to use, because perspective laws also apply to the surface of the earth, the sea, and the sky, and all living things. It used for convenience.
yes open, the left at a different angle according to whether we have clos at hand look with one eye only.
-шорр әәел әци чим рәје!
 ‘sı! un ןeuo!podoıd К|

 SبI

人M) Bu!s K

 ן!!

 '! təద of sə!!u

 !! ‘әш!

 ฉечł ио!!еэ!!

(•рртечиоәт

The rate idiom, a prime middle school development goal, is a special combination of the identity form ($\square=\ldots$), the ratio form (\square / \square), the change form ($\Delta=\square-\square$), and the base \pm change form ($\square \pm \Delta$) A prototypical example is the slope of a line, especially when perceived in the form ($m=\Delta y / \Delta x$). Here the identity form should invoke, to varying extents: the object and process stances, the ratio form, the change forms, an associated a 2D line graph, and a perceptual context such as temperature. Perhaps, this might also cause some activation o the base \pm change form in the sense of $y_{2}=m \Delta x+y_{1}$. However, this idiom is foundational, especially when combined with the identity idiom for the definitions of velocity, acceleration, and other similar quantities that link changes through proportion. This idiom is one of the cornerstones at the foundation of calculus. It is hard to imagine
someone comprehending calculus and its applications without this landmark symbolic idiom
The equal proportions idiom, is a geometric variation of the rate idiom that is seen in a couple of main symbolic forms. The first form is a specialized notation developed specifically for this idiom and carries over into the literary realm with the symbolic template intact ($\square: \square:: \square: \square$, eg., a:b::c:d, read as "a is to \mathbf{b} as \mathbf{c} is to $\mathbf{d ")}$. A slight symbolic variant uses the a combination of the balancing and ratio forms ($\square / \square=\square / \square$) in one of a number of ways that vary according to which values occupy the numerators and which the denominators. However, the underlying idiom should activate to some extent multiple balanced ratios. The situation is often visualized through the geometric diagram of similar triangles and associated with the corresponding symbolic forms: $a: b:: c: d, a / b=c / d, b / a=d / c$, as well as the alternative forms $a: c:: b: d, a / c=b / d, b / a=d / c$. The underlying relation should also activate to some secondary extent a related balance form: $\mathrm{ad}=\mathrm{bc}$.
Again, until this idiom is deeply embedded and perceptually available with only the slightest of cues, it is better when coupled with some meaningful context such as will become available in the scale model building section below.

The equal proportions idiom is more fundamental than the rate and proportional equivalence idioms in the sense that many of our algebraic notions are grounded in geometric perceptions as we can see in these visualizations. It is worthwhile perceptually for students to be able to visualize similar triangles in each of the these other visualizations (even though the horizontal and vertical lines are absent in the direct proportion graphic, they can be imagined).

Scale Model Building

Scale model building is one of a choice of projects suitable for early integration of science and mathematics at the beginning of middle school in a setting that includes explicit science and mathematics where the content is not necessarily (from the point of view of students) the primary goa of the lessons. One possible configuration focused to develop a meaningful, useful, and full featured scientific model and symbolic idiom is described in detail in this section. Other popular choices for early integration might include:

- Model rocketry with a focus on rocket trajectory for proper limitation of height and proper deployment of a parachute.
- Simple machines (inclined plane, levers and fulcrum, wheel and axle, rope and pulley, gears) with a focus on lifting a heavy block using a limited torque motor.

Scale Model Building Reading 1

Leonhardt \& Philbin (2010) Geometry and Light : The Science of Invisibility pp. 1-2. to mid-3 ${ }^{\text {rd }}$ paragraph +2 diagrams.

Leonhardt \& Philbin Geometry and Light : The Science of Invisibility

Prologue

Many mass-produced products of modern technology would have appeared completely magical two hundred years ago. Mobile phones and computers are obvious examples, but something as commonplace to us as electric light would perhaps be just as astonishing to an age of candles and oil lamps. It seems reasonable to assume that we are no more prescient than the children of the Enlightenment and that as that we are no more prent and that, as science and technology develop further, some things that appear impossible today will becom advanced sufficiently advanced technology is indistinguishable from magic". In this book we focus on optics and electromagnetism, an ancient subject so suffused with notions of magi the word illorn journals. We explain the science of the ultimate optical illusion, invisibility. The ingredients of invisibility can be used for other surprising optical effects, such as perfect imaging and laboratory analogues of black holes. Just as important as the particular applications discussed are the powerful ideas that underlie them, ideas that have a fascinating pedigree and that are far from exhausted. We hope to equip he reader with these versatile and fruitful tools of physics and mathematics.
Although invisibility may seem like magic, its roots are familiar to everyone with (literal) vision. Almost all we need to do is to wonder and ask questions. Take a simple observation from daily life and ask some questions: if a straw is placed in a glass of water it appears to be broken at the water's surface (Fig. 1.1). We know the straw is not really broken (and miraculously repaired when removed from the water), so what does the water change? It can only change our perception of the straw, its image carried by light. The water in the glass distorts our perception of space, and this perception is conveyed by light. We conclude that the water changes the measure of space for light, the way light "sees" distances-the geometry of space. Other transparent substances like glass or air, called optical materials or optical media, should not be qualitatively different from water in the way they distort geometry for light. So we are led to the hypothesis that media appear to light as geometries. In this book we take this geometrical perspective on light in media seriously and develop it to extremes. We also discuss its limitations and find the conditions when the geometry established by media is exact.

ә,

 -рәи!шә-ә рие

sjoquks

-Кџэәцр рәsn ло биииецд

(LOOZ ‘əunoqso

model pieces, and embellish the scale model (to strengthen ties to real world objects). These lessons should have the feel of an active, shop-like class, with a showcase finale

The outline of lesson plans that follow break the project down into 12 lessons of 90 minutes each. The first two lessons introduce science and mathematics content with associated activities ending with some brainstorming for the full featured scientific model. The third lesson pulls together an appropriate diagram, symbolic formulas, and explanations into the full featured scientific model of scale model building from photographs for the project. Construction can begin in the $4^{\text {th }}$ lesson for those with adequate notes. These six lessons ($4^{\text {th }}$ through $9^{\text {th }}$) are for calculations and construction of models. Projects should start wrapping up in the $10^{\circ n}$ lesson (including any painting and decorations), with 15 minutes reserved to review the use of science, math, diagrams, symbols, and explanations ahead of the $11^{\text {th }}$ lesson reserved for presentation development. One final lesson for presentation and gallery as part of the school community that includes parents and guests

In the lesson outlines that follow, some general associated Next Generation Science Standards (NGSS) with the three main subcategories Disciplinary Core Ideas (DCI), Science and Engineering Practices (SEP), and Crosscutting Concepts (CCC) are listed with the direct science instruction. Similarly, general associated Common Core State Standards for Mathematics (CCSSM) are listed with the direct mathematics instruction. Again, these are rough outlines only meant to suggest intention. No doubt, various CCSS Literature standards are addressed are addressed within as well, most notably through the notebooks and final presentation.

Lesson 0: Introduction of project choices

- Overview of scale model building with example scale model
- Display a scale model from previous projects.

Mention science of light and vision, perspective drawing, and geometry of similar triangles Mention development of scientific model incorporating these.
Mention use of photos, rulers, wood, saws, glue and decoration
Mention writeup.

- Video clip: http://vimeo.com/139407849 (Overstreet \& Gorosh, 2015)

Did the scale model change your idea of the solar system? How?
What did the builders do to build the model? (measurements, make and arrange parts) What is the same about the model and the solar system? What is different? (shape) What might scale models be useful for? (visualize, understand, explain)

- Other project choices (not described further, but perhaps: model rocketry, simple machines)

Lesson 1: Science of light and vision, readings, and discussion.

- Light and perception reading and activity:

Leonhard \& Philbin Geometry and Light : The Science of Invisibility
pp. 1-2. to mid-3rd paragraph +2 diagrams (see attachments).

- Activity of straw in water:

Move the straw from side-to-side in the glass
Write down observations and explanations.
What changes as the straw moves from one side to the other? Why?

- Teaching option: design an experiment
- Think, Pair, Share

Where does the light come from? (sun, lights, fire, ... energy)
simultaneously to establish and embed the equal proportions idiom and associate its various facets with the idiomatic entry in the symbolic dictionary of meaning. It also helps students practice the critical skill of visualizing the geometry and corresponding symbology. This idiom is used not only repeatedly in the full featured scientific model for the project, but will also appear again and again in further science and mathematics. Ideally, the project embeds this idiom deeply into the dictionary of each student so that related future cues easily activate the associated visualizations, symbolic forms, and words to not only generate meaningful perceptions, but furthermore facilitate the "natural and comfortable use of mathematics" (Redish \& Kuo, 2015) "with understanding" (Sherin 2001) that is the hallmark of scientific and mathematical literacy.

Secondary project goals include take away lessons that are often separated out into segregated
science and mathematics classes as well as the practice of beneficial and/or problematic skills:

- familiarization with some science of light and vision that will become increasingly important with the increasing role of robotics and automated processing,
- familiarization with similar triangles and the associated equal proportions,
- familiarization with perspective drawing
- practice measuring,
- practice using fractions,
- and practice visualizing relationships and representing them symbolically.

Another unique and beneficial result of the project lessons as outlined above is the qualitative investigation of the error/limitation of the model. This lends an engineering aspect of the project that is ripe for differentiation or further study in mathematics and art.

As important as the scientific literacy, and science and mathematics content, are the attitudes fostered by the project. Beyond the use of mathematics and science to achieve the project, the final project presentation and gallery has a crucial role to play in the educational scheme due to the potential impact of feelings engendered. Feelings of accomplishment will add to the resilience of students as well as to the value of mathematics, science, and education for them. Feelings of pride and recognition will encourage the continuation in science, technology, engineering, and mathematics related endeavors. Feelings of leadership and representation will encourage participation within the systems of education and society. Observation by primary students will set expectations of achievement within and enjoyment of the educational process as well as set the stage for prope appreciation of mathematics, science, and engineering.

Conclusion

Science, with its roots in observation and its goal of explaining the patterns of the world around us, provides an ideal context for grounding and giving value to mathematics. Mathematics, as a compact visual, symbolic, and literal language of patterns and relations, has evolved with science to represent and reason with these embedded patterns, sometimes taking its own trajectories leaving the world behind. Making worthwhile meaning with patterns is the link that binds them together. Mathematics is the language designed to tell the amazing stories of science, that loose something in translation and told in any other language. To be able to use both science with mathematics to first comprehend the understood and then explain the unknown must be demonstrated and practiced with students in order for them to learn the language and the stories so that they can succeed in our increasingly complex and interconnected world. Scale model building provides an ideal first step on this road in its potentia to develop a small, but crucial and fully interlinked piece of meaning: the equal proportions symbolic idiom. Furthermore, it has the potential deeply imprint this idiom with an enjoyable, interesting, meaningful, and useful story, while at the same time showcasing some of our finest tools of the trade of comprehension.

：şuәшuб！ss •

 uolpounf pue əınonłS כગכ SSON
uo！̣eue｜dxə pue usiueuวəw ：！วə

¿әәs әм ұечм џәәде мә！＾ґо әббuе sәор мон ¿səz！

：К！и！！эе рие би！реәл әл！ŋәәdsıə．

 ue bu！zর｜eu甘 dヨS SSON

 ¿ц！е әцъ и！ләґем ұпоае ұечм ¿әКә дno人 u！suә әчł ınoqe ұечМ ¿səsse｜6／sıeןnэou！̣ чı！

 （sıəر！！
¿ләңем и！рәsıәшш！әдәм ‘әм рие＇！！！р！р！

＇sциed ןәрош әןеэs 6и！！ип

＇sudeı6ołoud 6u！unseəu

sиэuәd әsеәл6 чıм sseן

pulw of səmoo ఛ！

 ＇pıeoq－əəએsod uo pue syooqәю૦

‘sбu！peәл әчł u！

Lesson 2: Similar triangles GeoGebra activities, brainstorm application to vision

GeoGebra activities for similar triangles (see attachments)
Explore and generate hypotheses (need to get and emphasize these):

- Similar triangles have adjacent sides of corresponding angle in the same proportion $(\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE} \rightarrow \mathrm{AB} / \mathrm{AD}=\mathrm{AC} / \mathrm{AE}$, as well as = BC/DE)
- Triangles with the same angle and corresponding sides in equal proportion are similar. ($A B / A D=A C / A E \rightarrow \triangle A B C \sim \triangle A D E)$.
- Introduce special symbolic notations
- $a: b:: c: d$ means $a / b=c / d$ as well as $b / a=d / c$
- $\triangle A B C \sim \triangle A D E$ means $\triangle A B C$ is similar to (has the same shape as) $\triangle A D E$ (order matters: corresponding sides and angles)
- Think-Pair-Share ratios that stayed the same: discover \& name the scale factor (AB/AD).

Think-Pair-Share ratios that stayed the same: discover \& name the scale factor (AB/AD).

- Note/discuss the association of diagrams, symbols, and words for the associated concepts of similar triangles, equal proportions, and scale factor
Compare historic hypotheses with statements and proof
(Late in Euclid: proportions and ratios are complicated, no symbols.)
Display English translation of 2000 year old Greek text.
Heath Euclid, The Thirteen Books of the Elements, Volume II, Bookx III-IX.
pp. 194-204. Propositions VI.2, VI.5, and VI. 6 statements and diagrams only
- Note/discuss the use of diagrams, words, and symbols and how they correspond

Note/discuss the statements of proposition only (no proofs).

- Map student hypotheses to closest Euclid proposition.

Read through Venema's preface section about proof:
Exploring Advanced Euclidean Geometry with GeoGebra (Venema, 2013 p. ix)

- Teaching option: Rational numbers as a number system beyond Greek math
(Deep connection here in density difference of reals=segments and rationals=fractions.)
- CCSSM 6.RP Understand ratio concepts and use ratio reasoning to solve problems.

CSSM 6.EE Apply and extend previous understandings of of arithmetic to algebraic expressions.

- Brainstorm use of similar triangles, photographs, and measurements
- Concept Card Mapping: Groups generate a concept network from cards:
- Light moves through air in straight lines.
- Distant objects are smaller, closer objects are larger.
- A combination of words and diagrams can help explain
- Triangle in object plane represents object.
- Triangle in photo plane represents photo.
- Triangle from eye to object
- Triangle from eye to photo.
- Diagram of similar triangles and proportion of scale factor.
- Diagram of perspective concept.
- Students generate sketches that include, object, photo, eye=camera Good student sketch on document camera (if possible).
See lesson 3 for goal diagram(s) and associated similar triangle use.
What should be in the drawing?
(object, eye=viewpoint, lines of light for key points, photograph, labels of points)
How can that help figure out scale modeling? (similar triangles, convert photo measurements to scale)

Poster-board presentations should include

- Diagrams for representing: lines of sight, near plane, far plane, eye, labels
- Photograph with key measurement and scale factor to convert to scale model measure.
- Symbols for similar triangles, equal proportions, equal ratios, conversion equation with an independent and dependent variable and identification of a scale factor.
- Two example calculations one of which verifies the scale factor.
- Written description of how light, geometry (of light), and perspective generate a model of scalings.
- Diagram and written description of inherent error and/or limitation of the model as used for the project.
- Written descriptions of how science, mathematics, or models help us understand or effect the world.
- Personal reflection on the project and personal meaning that should include difficulties and epiphanies.

Lessons 12: Presentations, model gallery, and celebration

- Models and poster-boards on display

Other students (including elementary students as possible), teachers, parents, guests invited browse and ask questions.

Discussion

These lessons are structured to accomplish the primary goals of engaging students with pieces of science, mathematics, and context in a focused way that allows formulation of a full featured scientific model utilizing diagrams, symbols, words and, most importantly, internal interconnections within content among these various representations as well as connections to perceivable real-world representations that help ground representations and the experience. If we now consider the various components of synergy mentioned before the lesson outlines, the ideal nature of the scale model building project comes into view.

The beginning is key. The introduction of the various projects puts the focus on the projects rather than science and mathematics content. Offering a choice of projects activates engagement of students and sets the foundation of attitudes wherein science and mathematics are used to help accomplish a desired goal. Moreover, the science and mathematics for scale model building are interrelated so that each content area brings value of deeper understanding to the other, and integrates synergistically in the full featured scientific model to help understand and accomplish the project. This makes explicit the interlinked nature of science in discovering how things work and corresponding mathematics that helps formulate usable expressions of relational patterns.

Next, notice how the primary sense of vision grounds all aspects of the experience. Students see:

- (optionally, hopefully) the real-world object,
- the photograph of the object, both perceptively and actively (through intentional componen selection and measurement, and hopefully, the taking and printing of the photograph),
- the lines of sight and light both diagrammatically and physically (via the perspective activity),
- the diagram linking the crucial components of the model and the experience, including multiple instantiations of the symbolic idiom of equal proportions in the context of visualizing similar triangles, both at the crucial model formulation stage, in notes, and at the final presentation, - the symbolic sentences of similarity and proportion, strongly associated with both visualizing diagrams and real world objects,

p！！nq ot ねכə！qo ue K！！？uәр।
sydeaboloud
 ұนәшиб！！ss \forall •
s｜əpou łnoqe seәpı 。

 ：sчооqәґои әңерdn słuәpnıS

 suoụe｜nэןе әןduexə

 suossə sno！ィәлd u！әqечиом иәлолd әлец sбu！̣р！nq pue sә6िрия

－шәцł иәәмұәд sd！usuo！̣еןəд
 ＇suolissəıdxə

－әכuə！

siəpou 6uisn pue 6uldoןəлəд dヨS SSON 。

：doןəләр оч suo！ssnos！p Kıewums Кə入्र

： （u！p
 syooqәəou səлоגdde pue sмə！ләд дәчэәә \perp

－（s）ydeı6ођочd pəəe！oosse pue p！！nq ol

әэпрәл лоłеи！

 ә૫ł ґ૦ ueds ə૫ł pue＇pəı！

Lesson 3: Review scientific model, review subject and photo selections, start calculations

Develop a unifying diagrams, associated symbolic formulas, and explanations

- Use similar triangles within and across near and far planes for the following points. When the objects in the near and far planes have the same orientation to A
the two planes are parallel)
$\Delta \mathrm{ABD} \sim \triangle \mathrm{AEG}$
$\xrightarrow{\rightarrow}$
AB : AE :: BD : EG
- $\triangle A B C \sim \triangle A E F$
-

angle $B=$ angle $E \rightarrow \triangle B C D \sim \triangle E F G$

- Use words: Same angle at B and E with corresponding sides in equal proportions means triangle $B C D$ is similar to triangle $E F G$.
- The ratio $\mathrm{BC} / E F$ ($=\mathrm{BD} / \mathrm{EG}=\mathrm{CD} / \mathrm{FG}$) is the scale factor from $\triangle E F G$ to $\triangle B C D$ Multiply by EF we get BC.
The ratio EF/BC (=EG/BD =FG/CD) is the scale factor from $\triangle B C D$ to $\triangle E F G$ Multiply by BC we get EF . Multiply by BD to get EG . Multiply by CD to get FG . We use the same scale factor for all 3!
See how the symbols give quantitative relations
- Notice how different aspects are all associated and captured in the symbols: equal proportions, scale factor, and similar triangles.
- Notice that science of light and vision is used to formulate our model and diagrams. The diagrams identify and relate parts of the model, science explains how they work
- Notice that mathematical symbols make patterns and reasoning explicit compactly. The diagrams and symbols fit on a page, and can be in our minds simultaneously. The symbols encode patterns in the diagram.
We see the pattern of the symbols to know that BC/EF (or ...) is the scale factor. Mathematics helps us formulate and reason with quantitative patterns.
- Notice that our model is bound together into the phrase scale factor as a specific concept that becomes a short hand for all of what we know about scaling
- Notice that our combination of science and mathematics, represented with diagrams, symbols, and words forms an understanding that far exceeds the results of any one of science, mathematics, diagrams, symbols, or words alone. This full-featured scientific model is the core of scientific and mathematical literacy fundamental to our modern scientific world view.
- Case 1: Near plane \leftrightarrow photograph, far plane \leftrightarrow real-world object.

Case 2: Near plane \leftrightarrow photograph, far plane \leftrightarrow scale model (when model > photo) Then we need to multiply photo measurements like BC by the scale factor EF/BC to get model sizes like EF. We get EF when we decide how big the scale model will be! Take BC as the largest measurement of the object (span of a bridge) in the photograph, and the corresponding size EF as the overall size of the model. Introduce measurement variables:
p for photograph measurmen
m for corresponding model measurement
Write an equation that relates them using the scale factor
Various equivalent forms, but this one has a procedural flavor.

- Case 3: Near plane \leftrightarrow scale model, far plane \leftrightarrow real-world object
- Teaching option: similar triangle transitivity and corresponding scale factors.
- Teaching option: proof of uniformity of similarity.

Teaching option: anamorphism error analysis. (This one suggested and included next!)

- CCSSM 6.RP Understand ratio concepts and use ratio reasoning to solve problems.

CCSSM 6.EE Reason about and solve one variable equations and inequalities.
CCSSM 6.EE Represent and analyze quantitative relationships between dependent and independent variables.
CCSSM 7.G Draw, construct, and describe geometrical figures and describe the
NGSS SEP relationships between them.
NGSS SEP Using mathematical and computational thinking
NGSS SEP Constructing explanations for science.
NGSS CCC Similar triangles patterns in nature
NGSS CCC Scale and proportion relationship.
NGSS DCI ETS1.B Developing possible solutions.
Anamorphism Error Analysis

- Commit and Toss: A 300m bridge has rail posts spaced every 10 m . Will the posts be evenly spaced in a photograph of the bridge?
- GeoGebra activity (see attachment)
- Conclusion: To minimize error, the photograph should be taken so that the viewpoint is:

