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Prefa
e
Simple ma
hines have been helping us work sin
e before we 
ouldwrite. They help us move things more easily and a
hieve morethan we 
ould without them. They help us lift boulders, pry thingsapart, sta
k them together, transport obje
ts and ourselves.In order to understand a few of these simple ma
hines and howthey work we'll use some basi
 math and physi
s (introdu
ed as weneed it).My hope is that on
e you know what these simple ma
hines are,and how they work, you'll be able to see them at work in the worldaround you and put them to work for yourself. I also hope thaton
e you see how easy it is, you'll start to apply the same prin
ipleswe use to understand these simple ma
hines to other ma
hines andeven more 
ompli
ated and subtle systems.A
knowledgmentsThis pamphlet was inspired by Jane Kenney-Norberg and the LEGOPhysi
s 
lasses she developed and tea
hes at the Oregon Epis
opalS
hool in Portland Oregon where daily she inspires and helps de-velop the potential of hundreds of 
hildren with bene�ts that in-
rease with the more I learn about her programs, edu
ation, anddevelopment of the human brain.Spe
ial thanks to Jane, Jimmy Springer, Kristen Haferbe
ker, theengaging, 
urious, and delightful LEGO Physi
s students and Tea
h-ing Assistants for giving me a 
han
e to be a part of it all.I'd also like to thank Leo Ri
e and Asher Klat
hko for ideas forsome of the exer
ises.
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Chapter 1
For
es
One of our main 
on
erns will be the movement of an obje
t fromone lo
ation to another. In order to move an obje
t we'll applyeither a push or a pull. Sin
e we'll be talking quite a bit aboutthese pushes and pulls, we'll use the te
hni
al term from physi
s,and 
all ea
h push or pull a for
e. For
es are what move thingsaround in the world. We owe this idea to Issa
 Newton who livedhundreds of years ago (from 1642 to 1727). He �gured out rules forhow for
es make things move. There are three basi
 rules that thatmake up Newton's Laws of Motion . In very basi
 language, the�rst two laws 
an be stated as:1. Without for
es, things remain in a 
onstant state of motion.If they are already moving, they keep moving in the samedire
tion and at the same speed. If they are not moving, theystay put.2. For
es 
ause things to 
hange their motion in the dire
tion ofthe for
e. The more for
e, the bigger the 
hange.Newton's laws of motion opened the door to understanding whyobje
ts fall to the ground and why the moon orbits the earth. Of
ourse, you probably already know I am talking about the for
e
alled gravity. In honor of �guring all this out, for
es are often1



2 CHAPTER 1. FORCESmeasured in units named after the person who gave us this in-sight: Newtons (abbreviated as N ). However, sin
e we are justgetting started with for
es and trying to build up our intuition,we'll start with a more familiar unit of for
e: Pounds1 (abbrevi-ated as Lbs). Sin
e approximately 4.48 Newtons is equal to onepound, one Newton is approximately 0.223 pounds, about halfwaybetween a quarter and a �fth of a pound: 0.223 ≈ 1/4.48.You probably already have experien
e measuring some quanti-ties like length, weight, and temperature that 
an be 
aptured bya single number. However, for
es are a bit more 
ompli
ated thanthis. To see why, let's start with temperature. Imagine a room witha light-bulb on in the middle of it. Sin
e the light-bulb fun
tions asa sour
e of heat, we expe
t that temperatures near the light-bulbare higher than than temperatures farther away. If we had somesort of instant-read thermometer, we 
ould move it throughout theroom, reading the temperature at various points.

1You may wonder about kilograms at this point. However, there is a subtle distin
tionbetween kilograms (whi
h are units of mass), and pounds (whi
h are units of for
e). Thisbe
omes important with 
areful use of Newton's se
ond law, but in pra
ti
e we 
an 
onvertbetween pounds and kilograms with an appropriate assumption and 
onversion fa
tor. See,for example, 
hapter 1 of my �Introdu
tion to Ro
ket S
ien
e: How high will it go?�



3Now let's imagine a 
omparable s
enario for for
es. Imagine asimilar room with a fan instead of a light-bulb. As the fan spins, itpushes the air around in the room. As the air presses on things, itexerts a for
e. One way to measure the for
e at a point in the roomwould be (without disturbing the air �ow) to release a small soapbubble at that point and observe its 
hange in motion at that point.We would have to measure two di�erent things about the motion.We would have to noti
e both how qui
kly it started to move andthe dire
tion in whi
h it started to move. One of the most versatileways to represent su
h a measurement is with an arrow. The tail ofthe arrow is pla
ed at the measurement point, the tip of the arrowpoints in the dire
tion of the motion, and the length of the arrowindi
ates the how qui
kly the motion 
hanged at the measurementpoint. These arrows form a mathemati
al system of ve
tors, andthere is a whole algebra of adding, subtra
ting, (several ways of)multiplying, and even dividing ve
tors2.

2For a qui
k introdu
tion to ve
tors see AppendixB.



4 CHAPTER 1. FORCESLet's try this out with a for
e that we are all familiar with,the one generated by the very planet on whi
h we live, the earth'sgravity. We'll 
onsider the for
e of gravity on three stones, oneweighing 5 pounds, one 2 pounds, and a 1 pound stone, ea
h beingpulled down toward the ground by di�erent amounts. You 
an feelthe di�eren
e if you try to lift them. The 5 pound stone is harderto lift: it is the heaviest. We 
an measure the for
e on ea
h of thestones with a weight s
ale. If our s
ale is a

urate and measuresweight in pounds, the 5 pound stone will weigh ... 5 pounds. Thefor
e of gravity will pull the stone down against the spring of thes
ale until the needle3 points to 5. The 2 pound stone will be pulleddown a little less than half of that, until the needle reads 2 pounds.The 1 pound stone will be pulled down against the spring exa
tlyhalf as mu
h as the 2 pound stone. The dire
tion of the for
e inea
h 
ase is straight down, toward the 
enter of the earth. To drawthe ve
tors for the for
e on ea
h stone, we'll �rst draw the arrowdown from the 1 pound stone with a 
onvenient size for the arrow.Then the arrow for the 2 pound stone will be twi
e as long, andthe one from the 5 pound stone will be 5 times as long.

3If you are using a digital s
ale, the stone pushes down against the pressure sensor andthe ele
troni
s either �ip through digits or wait until readings stabilize enough to read 5.0.



5We 
ould have used di�erent sized arrows, but it is a good ideawhenever possible to use the same s
ale for all the ve
tors in thesame diagram. For example, if the stones weighed 50, 20 and 10pounds instead of 5, 2, and 1 pounds, we 
ould use the same dia-gram, using the same arrows to represent the for
es (ex
ept di�er-ent labels) be
ause 20 pounds is just 2/5ths of 50 pounds, just as2 pounds is 2/5ths of 5 pounds. (See exer
ise 4.)Now, let's use this 
on
ept of for
e to 
onsider4 a 20 pound stonesitting still on the ground. We know gravity is pulling down on thestone. If for
es make things move, why is it just sitting there notmoving? You probably already know the ro
k doesn't move be
auseit is on the ground, and the ground is �rm and doesn't budge mu
heven when you jump on it. Let's 
hange the way we are thinkingabout it.We 
an think of the ground pushing up on the stone, just likegravity is pulling it down. In fa
t, we think of the ground pushingup on the stone just exa
tly as mu
h as gravity pulling down on thestone, so that the two for
es on the stone are in opposite dire
tionsbut have the same magnitude, 
an
eling ea
h other out. We saythat the sum of the for
es is zero. The pressure to move down isexa
tly 
an
eled by an upward pressure in a way that is similar tothe way that a motion 3 feet to the north is 
an
eled by a motion3 feet to the south. When we add the two motions together we endup right where we started.The 
ase of adding two ve
tors of the same length, but oppositedire
tions is one of the simplest examples of adding ve
tors. Let'stake a look in the following diagram:4An experiment we perform only in our minds is known as a thought experiment andperforming them is a proud tradition in physi
s, though using your mind to �gure thingsout only by thinking about them is not unique to physi
s and is a generally a good idea ;^)



6 CHAPTER 1. FORCES

More generally, when two ve
tors lie on the same line we simplyadd their signed magnitudes, where we pi
k one dire
tion of theline as positive and the other as negative. In our 
ase we 
an pi
kup as positive and down as negative so that we have -20 pounds offor
e from gravity and +20 pounds of for
e being supplied by theground. When we add them together we get a resulting for
e of 0pounds so that, by Newton's 1st law of motion, the ro
k stays put.(For more on adding ve
tors, see appendix B.)Now, let's 
ontinue to use this 
on
ept of for
e to 
onsider whathappens when we lift the 20 pound stone up from the ground onto api
ni
 table. We bend down (with our legs, not our ba
ks), extendour arms and put our hands underneath the stone on both sides sothat everything will stay balan
ed (so the stone doesn't fall as we liftit), grab the stone, and then we start to lift (with our legs). We startto apply for
e with our leg mus
les. To be most e�e
tive (to use thefor
e of our leg mus
les most e�
iently) we lift straight up, dire
tly
ountering the for
e of gravity that is pulling the stone straightdown. (We'll talk more about for
e, the dire
tion of motion, and



7resulting work in the next 
hapter).If we lift very slowly, gently in
reasing how mu
h strength weuse, at �rst nothing happens ex
ept that we feel in
reasing pressurein our hands and legs. In
reasing the use of our mus
les slowly, wefeel the stone move up and away from the ground just at the pointat whi
h we apply exa
tly as mu
h for
e up as gravity is pullingthe stone down. As we put more mus
le into it, the stone moves upmore qui
kly. This is Newton's 2nd law of motion: as the resultingsum of for
es be
omes greater, the stone in
reases its motion inthat dire
tion. As we gently de
rease our e�ort, the ro
k 
omes toa stop with us (instead of the ground) pulling up on the ro
k justenough (20 pounds worth) to 
ounter the pull of gravity.Before we move on to 
onsider the work done when we moveobje
ts around, try your hand at the following exer
ises to testyour understanding so far.



8 CHAPTER 1. FORCESExer
ises1. Make a diagram with two stones: a 6 pound stone sitting ona table, and 3 pound stone that is just beyond the edge ofthe table, at the height of the table, falling toward the ground(as if it has just been pushed o� the table). Draw arrows torepresent the for
es on both the 3 pound, and the 6 poundstone.2. Think about the situation where we are starting to lift a 20pound stone up, o� of the ground. Suppose that we startlifting with 5 pounds of for
e, and the ro
k is not yet mov-ing. With how mu
h for
e must the ground still be pushingup against the ro
k to exa
tly 
ounterbalan
e the remaininggravitational for
e? Make a diagram with the ro
k on theground and the 3 for
e arrows that summarize this situation:one for
e arrow for gravity, one for your 5 pound lift, and thethird for the push of the ground. Draw all of the arrows withtheir tail as a dot at the 
enter of the stone. Be sure to labelthe arrows as in the diagram ba
k on page 6.3. Suppose that you weight 100 pounds and that you 
an easilywalk up stairs and jump up and down.(a) At a minimum, how mu
h for
e 
an you generate withboth legs?(b) Suppose that both legs are equally strong. At a minimum,how mu
h for
e 
an one leg generate?(
) Suppose that you 
an jump up and down on only one leg.At a minimum, how mu
h for
e 
an that one leg generate?4. Just as 2 piles of 5 beads is 2 × 5 = 5 + 5 = 10 beads, and 3groups of 4 is 3× 4 = 4+4+4 = 12, 2 times 1/5th is 2× 1

5
=

1

5
+ 1

5
= 2

5
= 2×1

5
. More generally, we have in a similar way, forany integers n, m, and non-zero d: m× n

d
= n

d
+· · ·+ n

d
= m×n

d
.Similarly, n

d
×m = n

d
+ · · ·+ n

d
= m×n

d
. Use this along with thefa
t that the denominator d of the fra
tion represents divisionby d to �nd the integer value for 2/5ths of 50: 2

5
× 50 =?



Chapter 2
Work
We already have some intuition about work from what we feel whenwe move things (in
luding ourselves) with our bodies. In this 
hap-ter we'll use this together with the idea of for
es from the last 
hap-ter as a guide to help us generate a de�nition of work. This willhelp us gain a deeper understanding of work, in
luding a surprisingresult about something that feels like work, but won't 
ount towardthe way we measure it.You probably know when you've done some work, say, lifting a20 pound stone from the ground up onto a table. You 
an feel inyour legs (if you are lifting properly) that you've done some work.You've applied a for
e to the ro
k and moved it some distan
e, say2 feet. How mu
h for
e was applied? 20 pounds of for
e. Until youapply 20 pounds of lift to the stone, it stays put. On
e you balan
ethe downward for
e of gravity exa
tly with an upward dire
ted for
eto 
an
el it, the stone is free to move in an upward dire
tion withan appli
ation of additional for
e in that dire
tion. In this 
hapter,we'll quantify (�gure out how to assign numbers to) the amount ofwork using mathemati
s you probably already know.

9



10 CHAPTER 2. WORK

We start with a 
ouple of simple observations. First, we'll wantto arrange things so that if we lift the stone twi
e as high, we'vedone twi
e as mu
h work. Similarly, if we lift the stone only halfas high, we've done only half as mu
h work. We 
an 
apture thisin a mathemati
al expressions by multiplying by the distan
e thatwe've lifted the stone so that we have, so far:Work = (some math expression) × Distan
eMultipli
ation by distan
e 
aptures this aspe
t of work ni
ely. Ifwe lift something three times as far, we've done three times asmu
h work. We'll have more to say about dire
tion and distan
elater, but before we take a 
loser look at that, let's in
lude a se
ondobservation in our mathemati
al de�nition of work.
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The se
ond observation we'll want to 
apture is that if the stoneweighs twi
e as mu
h (think of it as split into two equal parts), andwe lift it the same distan
e, we'll again have done twi
e as mu
hwork. Similarly, lifting a stone that weighs only half as mu
h re-quires only half as mu
h work. To �nish o� our mathemati
alde�nition of work, we have to 
ombine this with the downwardgravitational for
e of the stone from the last 
hapter. In parti
u-lar, to lift the stone, we exert a for
e on the stone that 
ountersthe gravitational for
e 
ausing the stone's weight. From our per-spe
tive, the work we've done in lifting the stone is the followingmultipli
ative 
ombination of not only how far we've moved thestone, but also the amount of for
e we've had to apply to move it:Work = Force × Distan
eWe'll 
all this the work equation and we'll use it to �nd nu-meri
 values for work. So, for example, in lifting a 20 pound stone2 feet we do 40 foot-pounds worth of work. Lifting a 10 poundstone 3 feet requires 30 foot-pounds of work.Here 
omes the surprising part of our de�nition. What if wepush on a really heavy boulder sitting on the ground, one thatweighs, say, 1000 pounds, without moving it? Sin
e the distan
e



12 CHAPTER 2. WORKmoved is zero, we haven't done any work even though it feels like it.However, if we think about it the right way, this makes sense: eventhough we may push really hard against the boulder, we haven'treally a

omplished any work, even though we may use a signi�-
ant amount of energy trying. This re�e
ts the fa
t that with ourquantitative de�nition of work we are measuring results external toourselves, in the world, not internally, how they feel inside.Now, let's 
ontinue with our example, thinking about lifting a20 pound stone 2 feet to set it on a table. In addition to lifting thestone, there is a for
e and distan
e required to move it over to thetable top:

This brings up a number of interesting questions about the kindsof work done in lifting the stone and setting it on the table. The�rst distin
tion we make is between 
onserved and unre
overablework. Conserved work is work that is stored in some way thatallows re
overing the work. For example, in lifting the stone fromthe ground to the table height, we have stored the work in the



13height of the stone. We 
ould get 40 foot-pounds ba
k out of this
on�guration, by letting the stone fall through the 2 feet, ba
k tothe ground, perhaps lifting something else as it falls. The potentialwork that is stored in the height of the stone is 
alled potentialenergy.What about on
e we've lifted the stone, and are just holding itup without moving it? Just as with the 1000 pound boulder sittingon the ground: even though we are spending energy to keep thestone at the height (it feels like work), a

ording to our de�nition,sin
e the stone is not moving (distan
e is 0), we are doing no work.Next let's 
onsider the horizontal motion of the stone requiredto set it on the table top. First we 
onsider the horizontal motionthrough the air with no1 resistive for
es. We use Newton's se
ondlaw of motion that tells us: without some for
e to 
an
el it, even thetiniest for
e on the stone in the dire
tion of the table top will 
ausethe stone to start moving in that dire
tion. We'll leave �guring outexa
tly how mu
h for
e and how fast the stone moves to a moreadvan
ed investigation of Newton's laws2. In this pamphlet, we'llsimplify the situation to say that, in prin
iple, we 
ould make thesideways for
e, and thus the work, as small as we'd like. In this
ase we 
an ignore 
ompletely this non-resistive horizontal motionof the stone. However, just so that you 
an know about the otherkinds of work and energy, we'll brie�y 
onsider the other 
ases.So, on the other hand, suppose that we pushed hard, in
reasingthe stone's motion in the horizontal dire
tion so mu
h as to do asigni�
ant amount of work. This work would also be stored, in this
ase, in the horizontal motion of the stone. This is 
alled kineti
energy. We 
an re
over the work by having the stone hit or pushsomething, performing some work for us, perhaps, storing it as1I should say �essentially no resistan
e� be
ause there is some resistan
e just to pushthe air out of the way. However, for our purposes, we will 
onsider this ex
eedingly smallamount of work insigni�
ant. Can you think of a situation in whi
h pushing the air out ofthe way is so mu
h work that we must take it into a

ount?2For example, if you'd like to get involved with model ro
ketry, 
he
k out my pamphlet�Introdu
tion to Ro
ket S
ien
e: How high will it go?�



14 CHAPTER 2. WORKpotential energy with some ingenious me
hanism (su
h a springand 
at
h, or the lifting of some weight).The �nal kind of work is unre
overable. Unre
overable workis work that is lost and 
annot be re
aptured. This sort of work 
anarise from sliding the stone along the table top. The 
on�gurationof the table top surfa
e with the stone pushing down on it 
auses thetwo surfa
es to sti
k together. The amount of sti
kiness dependsstrongly on the nature of the surfa
es and 
reates an opposing,resistive for
e to our push 
alled fri
tion.Consider an air-ho
key table (providing a slippery 
ushion ofair) with the bottom of the stone being smooth, �at, and largeenough to keep the stone �oating. Then the tiniest push will startthe stone sliding. In this 
ase there is almost no for
e opposing apush and we say that there is (pra
ti
ally) no fri
tion. Moving thestone 1 foot 
ould take an insigni�
ant amount of for
e (and thuswork), just like moving it through the air.On the other hand, if the table has a rough, wooden surfa
ethat 
reates a signi�
ant amount of fri
tion, we might have to pushwith 5 pounds of for
e in order to slide the stone. In this 
ase,the fri
tional for
e opposing a push is 5 pounds, and in sliding thestone 1 foot a
ross the table we would do 5 foot-pounds of work.What happens to the work? Is it stored somewhere? It is, a
tually.The rough surfa
es rubbing together 
reate heat.You 
an try it with your hands. Try rubbing the palms ofyour hands against ea
h other, ba
k and forth, while pressing themstrongly together. The harder you press your palms together, themore fri
tion you 
reate, and the more heat you generate. Further-more, the faster you rub your palms together, the more fri
tion you
reate, and the more heat you generate.In general we 
an't re
over the work that 
reates heat. Thesubje
t that deals with the study of heat, heat transfer and storage,and exa
tly how (and how mu
h) heat 
an be 
onverted into workis the area of s
ien
e known as thermodynami
s that we'll leavefor some future investigation.



EXERCISES 15Exer
ises1. Fill in the empty 
ells in the following table:For
e Distan
e Work12 pounds 36 foot-pounds4 feet 36 foot-pounds5 pounds 3 feet6 Newtons 12 Newton-meters7 Newtons 3 meters2. Suppose we have two ways to lift a 12 pound stone 2 feet. Howmu
h for
e must be applied to lift the stone dire
tly? Howmu
h work is done? An easier way requires only 6 pounds offor
e. If the amount of work is the same, over what distan
emust the 6 pounds of for
e be applied?3. Imagine being at the top of a steep hill on a bi
y
le.(a) Coasting down the hill on the bi
y
le 
onverts what sortof energy into what sort of energy?(b) When you apply the brakes, what sort of for
e are you
ounting on?(
) If the brakes are working well, what sort of energy is 
re-ated?4. For this exer
ise, let's suppose that all 100 pounds of yourweight is lo
ated at the 
enter of your body. Suppose thatwhen you 
rou
h down to jump as high as you 
an, the 
enterof your body is at a height of 1 and 1/2 feet, and that at fullextension your 
enter is at a height of 3 and 1/2 feet. Furthersuppose that during the jump your legs 
an apply a for
e of200 pounds to lift your body through the jump when you aretrying to jump as high as possible.(a) What is the displa
ement of the 
enter of your body forthe portion of the jump during whi
h your legs apply thefor
e?



16 CHAPTER 2. WORK(b) If you are trying to jump as high as possible (using the fullfor
e that your legs 
an supply), what is the work doneby your legs for this portion of the jump?(
) What is the minimum work required to lift your body forthis portion of the jump?(d) What is the di�eren
e between the the minimum workrequired and the work done by your legs when trying tojump as high as possible?(e) At the point your feet leave the ground, what sort of en-ergy stores the extra work done by your legs identi�ed inpart (4d). Will this energy 
ontinue to do work? Does itin�uen
e the height of the jump?(f) To what height do you expe
t the 
enter of your body totravel by applying 200 pounds of for
e with your legs?5. In this exer
ise3, suppose that all 100 pounds of your weight islo
ated at the 
enter of your body. Suppose that your joggingstride is 4 feet, and that with ea
h jogging stride you moveyour 
enter of weight up only 1/2 foot. Assume that youjog e�
iently by not jumping during the stride, so that yourfoot stays in 
onta
t with the ground for the 
omplete upwardmotion of your body, and any time spent 
ruising through theair is in the forward and downward dire
tion. (In other words,assume that most signi�
ant part of the work of the stride isspent lifting your body the 1/2 foot.)(a) How mu
h work is done with ea
h jogging stride?(b) Estimate the work done in running one mile (5280 feet).(
) Without 
hanging your weight, name two ways to in
reaseyour jogging e�
ien
y (de
ease the work required to joga mile).
3Thanks to Asher Klat
hko for the ideas behind this exer
ise.



Chapter 3
The Lever and Ful
rum
In this 
hapter we take a look at what must surely be one of thesimplest and �rst ma
hines ever used by humans. We probably�rst used these ma
hines before we started writing stories to pre-serve knowledge a
ross generations. To make one of these simplema
hines, all you need is a strong sti
k to use as a lever, a ro
k fora ful
rum, and then you are ready to use it to tumble a boulder.Let's take a look at the basi
 
on�guration and name the essentialparts1:

There are two fundamental parts of this simple ma
hine: thelever, and the ful
rum. An ideal lever is straight and strong. This1Thanks to Jane Kenney-Norberg for this diagram.17



18 CHAPTER 3. THE LEVER AND FULCRUMallows the full transfer of for
e from the point of e�ort to the pointof load. An ideal ful
rum 
omes to a point and is immovable (how-ever, in pra
ti
e a sharp point is easier to break and 
an damagethe lever more easily than a rounded point). The lever is 
omposedof two parts, the load arm and the e�ort arm. The load arm isthe part of the lever that extends from the ful
rum to the pointof load (where the load is lo
ated on the lever). The load is theobje
t to be moved or pushed against. The e�ort arm is the partof the lever that extends from the ful
rum to the point of e�ort(the position where for
e or e�ort is applied to move the load).To see how a lever and ful
rum make lifting an obje
t easier,let's take a look at a spe
i�
 
ase: lifting a 24 pound ro
k, 1 foot,using a 12 foot lever. Let's pla
e the ful
rum so that it divides thelever into a 4 foot load arm, and 8 foot e�ort arm:

Let's label the points of the load triangle ABF and the e�orttriangle CDF. I've pla
ed small squares at the 
orners B and Dto indi
ate those 
orner angles are the same as that of a square(they're 
alled right angles) indi
ating that the work distan
eand the e�ort distan
e are verti
al. More to the point, the workdistan
e is along the line of gravitational for
e (weight) that thero
k feels and so, as we dis
ussed in 
hapter 2, we 
an use the workequation to determine the amount of work in lifting the ro
k as:Work = For
e × Distan
e
= 24 pounds × 1 foot
= 24 foot-pounds



19To further our understanding, we'll ignore any fri
tion at theful
rum or bending of the lever, and make the assumption that thework done in lifting the ro
k is the same whether we lift it dire
tly,or use the lever and ful
rum. This is what is known in physi
s asa 
onservation prin
iple, a rule that says that some quantityremains 
onstant a
ross some sort of 
hange. In our 
ase, work is
onstant a
ross the 
hange of how we perform the work. We 
ansay that work is 
onserved or talk about the 
onservation of workin simple ma
hines. We 
an use this to better understand the e�ortside of the situation, but �rst we'll need a little geometry.We need to observe that triangle ABF has the same shape astriangle CDF. In other words, the 
orresponding angles of the tri-angles are the same2: the angle at A is the same as the one at C,the angle at B is the same as the one at D, and the angles at F arethe same. (For more on this see exer
ises 1 and 2.) This meansthat the e�ort triangle and its parts are some multiple of the loadtriangle and its parts3. This allows us to work out the s
ale fa
tor,sin
e we know the lengths of the load and e�ort arm are 4 feet and8 feet respe
tively:
Load_Arm × S
ale_Fa
tor = E�ort_Arm

4 feet× S
ale_Fa
tor = 8 feetWe 
an see that the s
ale fa
tor is 2 in two ways: either by�guring out what we have to multiply 4 feet by in order to get8 feet, or by dividing both sides of the equation by 4 feet (seeAppendix A for more on working with equations). Either way,2When two geometri
 obje
ts have 
orresponding angles that are the same, we say theobje
ts are similar. When the obje
ts have the same angles and size, we say they are
ongruent. Rather than saying two line segments, angles, or triangles are 
ongruent,Eu
lid would have said �equal.�3Another way to say this is that the two triangles are in proportion: dividing 
orrespond-ing lengths gives the same ratio. That ratio is the s
ale fa
tor, or multiple, mentioned inthe text. This is a 
ombination of Eu
lid Book I propositions 28 and 29 about angles ofparallel lines, and Book VI proposition 2 about 
utting a triangle with a line parallel to aside.



20 CHAPTER 3. THE LEVER AND FULCRUMwe know that the e�ort triangle and its parts are 2 times biggerthan the load triangle and its parts. This means that the e�ortdistan
e is 2 times 1 foot, or 2 feet. Let's take a look at how this
on�guration makes it twi
e as easy to lift the ro
k.To lift the ro
k up, we push straight down on the e�ort endof the lever so that the lever rotates about the ful
rum. We pushdown through the e�ort distan
e of 2 feet. We now use the work
onservation prin
iple to reason that the amount of work in liftingthe ro
k with the lever is the same as lifting it dire
tly. Sin
e weknow how mu
h work it is to lift the ro
k dire
tly, 24 foot-pounds,we 
an now use the work equation to �gure out how mu
h e�ortwe have to apply to the e�ort arm to lift the ro
k:Work = For
e × Distan
e
24 foot-pounds = For
e × 2 feetThis tells us that we only have to use 12 pounds of for
e to lift a24 pound ro
k! It is twi
e as easy to lift the ro
k with the leverand ful
rum! A lever with an e�ort arm twi
e as long as the loadarm has magni�ed our strength by a fa
tor of 2. However, noti
e(diagram page 18) that in order to lift the Load (24 pounds) theWork_Distan
e (1 foot), we had to apply the E�ort (12 pounds offor
e) through the E�ort_Distan
e (2 feet) so the amount of workremains the same. This is the assumption we started with. Let'sbe even more expli
it with the following lever-work equation:Load ×Work_Distan
e = E�ort × E�ort_Distan
eWhat we are really 
ounting on to make sense of all of this isthat the work on the left side of the equation is the same as the workon the right side. Even though we have good reason to believe thework is the same, how 
an we 
he
k that it really works this way?Exer
ise 3 may give you an idea for some experiments you try totest this equation. However, let me just say that the more a

urateyour measurements of distan
es and weights, the more importantthe weight of the lever itself be
omes.



21We need to look at one more aspe
t of the e�ort for
e before wemove on. You may want to review the dis
ussion of the horizontalmotion on page 13. We found there that we 
ould ignore the for
eto move the stone horizontally, that the work of moving stone tothe table top was due almost entirely to the for
e of lifting the stonestraight up.Similarly, with our lever and ful
rum, only the for
e in the dire
-tion of the work distan
e 
ontributes. Be
ause of the geometry ofthe lever and ful
rum, this translates dire
tly into the for
e we ap-ply through the e�ort distan
e. Only the part of the for
e we applyto the lever straight down 
ontributes signi�
antly to the work oflifting the 24 pound ro
k. This is why we use the verti
al distan
esrather than the 
urved ar
 lengths in the lever-work equation: theverti
al distan
es lie 
ompletely in the dire
tion of the for
e neededto lift the ro
k .Lever and ful
rum ma
hines are so useful and have been appliedin so many ways, that their 
on�gurations have been 
ategorizedinto 
lasses4. The diagrams on pages 17 and 18 show what is knownas a 
lass I lever5. The e�ort arm and load arm o

upy di�erentportions of the lever on opposite sides of the ful
rum. In 
lassII levers, the load and e�ort arms overlap, o

upying a 
ommonportion of the lever, with the point of load between the ful
rumand point of e�ort:

4http://en.wikipedia.org/wiki/Lever5To be used as a lever and ful
rum simple ma
hine, a lever is always paired with aful
rum. However, our human nature to 
ollapse blo
ks of information into more 
ompa
tabstra
tions often 
auses us to abbreviate the phrase �lever and ful
rum� to the shorter,single word �lever�.



22 CHAPTER 3. THE LEVER AND FULCRUMClass III levers have the point of e�ort positioned betweenthe ful
rum and the point of load. The most familiar example of a
lass III lever is the elbow and bi
ep of the human arm:

In addition to these lever 
lassi�
ations, I'll give you one �nal
on�guration that utilizes a pair of levers, 
onne
ted with an axleor freely rotating 
onne
tion that fun
tions as a ful
rum for bothlevers. These simple ma
hines are so handy, that not only have youprobably already used them, but you probably don't even thinktwi
e about how they work:

One thing all these di�erent lever 
on�gurations have in 
om-mon is that the same prin
iples that we used to understand the
lass I levers apply: the similarity of the load and e�ort triangles,and the 
onservation of work. Exer
ises 5 and 6 give you a 
han
eto work with these other 
on�gurations.



23We 
an even use levers in a purely abstra
t way as des
ribedin appendix A to help us better understand 
on
epts, or even to
al
ulate the area of 
urved geometri
 shapes as Ar
himedes didthousands of years ago6.Finally, there is a spe
ialized appli
ation that is so profoundthat it is 
onsidered its own, distin
t simple ma
hine. We'll takea look at this more 
losely in the next 
hapter, but �rst, try thefollowing exer
ises to test and improve your understanding of leverand ful
rum systems.

6See Netz and Noel's �The Ar
himedes Codex: How a Medieval Prayer Book is Revealingthe True Genius of Antiquity's Greatest S
ientist� for this fas
inating story. One of the re-
overed writings des
ribed is the method wherein Ar
himedes uses the leverage prin
iple (seethe leverage equation on page 51) to 
al
ulate the area of a parabola se
tion, foreshadowingour modern 
on
eption of the Cal
ulus.



24 CHAPTER 3. THE LEVER AND FULCRUMExer
isesThe �rst two exer
ises ask you to write and work with some equa-tions. If this sort of thing is new to you or you feel like you wantto know more about equations before trying this, see Appendix A�rst.1. Eu
lid's De�nition 10 in Book I of a right angle tells us thatthe angle of any line is 
omposed of two equal angles (likethe 
orner of a page) 
alled right angles and Postulate 4 ofBook I tells us that all right angles are equal. If we assignnumeri
 measures to angles so that a right angle measures 90degrees (90◦), this tells us that the angle of a straight line is180 degrees (180◦). In the diagram of the lever and ful
rumdepi
ted on page 18, let ∡
◦AFB denote the measure of angleAFB, ∡◦BFC denote the measure of angle BFC, and ∡◦CFDdenote the measure of angle CFD.(a) Write an equation for the sum of angle measures alongline AFC in terms of ∡◦AFB, ∡◦BFC, and ∡◦AFC.(b) Now, write an equation for the sum of angle measuresalong line BFD in terms of∡◦BFC, ∡◦CFD, and∡

◦BFD.(
) Finally, use these two equations to show that ∡
◦AFB =

∡◦CFD. [In essen
e, this is Eu
lid's Proposition 15 ofBook I. These angles are 
ommonly 
alled verti
al an-gles. Angles BFC and AFD are also verti
al angles.℄(d) Re
reate the sket
h of the load and e�ort triangles onwhite paper and use a blue highlighter to 
olor in the an-gles AFB and FBC (angles of the equation of part (1a)).Use a yellow highlighter to 
olor in the angles BFC andCFD (angles of the equation of part (1b)). Noti
e thatpart (1
) is about showing that the portion of the sket
hwith blue pigment is equal to the portion with yellow pig-ment, by subtra
ting out the 
ommon in green.



EXERCISES 252. Eu
lid's Proposition 32 of Book I argues that the sum of the in-ternal angles of any triangle add up to two right angles (180◦).In the diagram of the lever and ful
rum depi
ted on page 18,let ∡◦AFB, ∡◦ABF , and ∡◦BAF denote the measures ofthe load triangle angles, and ∡◦CFD, ∡◦CDF , and ∡◦DCFdenote the measures of the e�ort triangle angles.(a) Write an equation for the sum of the load triangle angles.(b) Write an equation for the sum of the e�ort triangle angles.(
) Now 
ombine the equations in parts (2a) and (2b) intoone equation by eliminating the 180◦.(d) Use result 1
 above, substitute 90◦ for∡
◦ABF and∡

◦CDE,and show that ∡◦BAF = ∡◦DCF .(e) Re
reate the sket
h of the load and e�ort triangles onwhite paper. Use a blue highlighter to 
olor the B andD 
orners of the load and e�ort triangles. Use a yellowhighlighter to 
olor the F 
orners of the load and e�orttriangles. Part (2
) is about showing the sum of left blue,yellow, and white angles is equal to the sum of right blue,yellow and white angles. Part (2d) is about showing thatsin
e the blue angles are equal, and the yellow angles areequal, then the white angles must also be equal.3. Fill in the empty 
ells in the following table to satisfy thelever-work equation:Load ×Work_Distan
e = E�ort × E�ort_Distan
eLoad Load Work E�ort E�ort E�ortArm Distan
e Arm Distan
e36 Lbs 12 ft 3 ft 12 Lbs20 Lbs 4 ft 8 ft 2 ft6 Lbs 3 ft 1 ft 9 ft0.5 in 3 in 1 in 6 Lbs2/3 in 3 in 1 in 6 Lbs3 m 5 m 5 
m 6 N5 N 2 m 1 m 20 N



26 CHAPTER 3. THE LEVER AND FULCRUM4. Refer to our lever and ful
rum depi
ted on page 18. Assumethat the lever material has very little weight 
ompared to the24 pound ro
k.(a) What 
ould you pla
e at the point of e�ort of the leverto 
he
k that the amount of for
e required to lift the 24pound ro
k is 
ut in half?(b) What physi
al 
ondition (position of the lever) signals theveri�
ation of balan
ed for
es in part (a)?5. Suppose that you have to move a ton (2000 pounds) of dirtwith a wheelbarrow. Furthermore, suppose that you 
an lift(with your legs), hold up (with hands and arms), and moveabout 100 pounds above and beyond your body weight. Fi-nally, suppose that the 
enter of the barrow (bu
ket) is 2 feetfrom the 
enter of the wheel, and that you grasp the handles
omfortably about 4 feet from the 
enter of the wheel.(a) About mu
h dirt 
an you 
arry in one wheelbarrow load?(b) About how many trips will you have to make to move thedirt from the street (where it was delivered by the dumptru
k) to the garden.?6. Suppose that you squeeze the handles of a typi
al s
issors(shown below) together with 6 pounds of for
e applied at pointE. What is the for
e applied at point A? At point B? At pointC? [Hint: use exer
ise 3.℄



Chapter 4The Wheel and Axle
In this 
hapter we fo
us our attention on simple ma
hines that bringthe in�nitely symmetri
al shape of the 
ir
le to our aid in movingobje
ts. To start, 
onsider how a 
ir
ular shape 
an be used toredu
e the fri
tion of moving obje
ts mu
h as an
ient Egyptiansare thought to have used logs to move the blo
ks of a pyramid:

Before we take a 
loser look, let's introdu
e some terminology:

27



28 CHAPTER 4. THE WHEEL AND AXLENow 
onsider what happens as we push the blo
k to the right:

As we push the blo
k, the fri
tion between the top of the log andthe blo
k 
ause a resistive for
e (to the left) on the blo
k. Thetop of the log feels this as a for
e (to the right) applied to the topof the log. Similarly, the fri
tion between the log and the ground
ause a resistive for
e (to the left) at the bottom of the log as thelog is pushed to the right from the fri
tion at the top. These for
eson the top and bottom of the log in opposing dire
tions 
ause itto rotate about its 
enter, rolling along both the ground and theblo
k.We 
an redu
e energy lost in fri
tion by making the 
ylindersand their alignment perfe
t as well as making the blo
k and groundmore �at, smooth and hard. Suppose we redu
e the fri
tion so mu
hthat we 
an ignore it, and yet we still do a large amount of workin moving the blo
k horizontally. Can you re
all from 
hapter 2where the energy is stored? In this 
ase, the work is 
onverted intothe kineti
 energy of the motion, not only of the blo
k, but also therotation of the logs.However, even if we 
an keep everything properly aligned, onesubstantial problem with this 
on�guration is that the 
ylinders willroll out from underneath the blo
k: ea
h half rotation 
auses the
ylinder to move ba
k on the blo
k by one half of its 
ir
umferen
e.In order to keep the 
ir
ular shape (known as a wheel) in pla
eand 
orre
tly oriented to help move obje
ts, we atta
h ea
h wheelto a shaft (known as an axle) that allows the wheel to be �xed inpla
e and yet rotate as needed. This reintrodu
es fri
tion with therotation of the wheel, but keeps the wheels aligned, in pla
e, and



29eliminates the need for the moving obje
t to be �at.We'll soon look more 
losely at fri
tion, but, �rst, let's take a
loser look at a simpler 
on�guration of a wheel and axle ignoringfri
tion for the moment.

As we turn the wheel (we 
ould use a belt or gear teeth aroundthe 
ir
umferen
e of the wheel, or just grab there with our handsto turn it), the line winds around the axle and lifts the weight. Thequestion we'll dig into further is: How does the wheel and axle helpus lift the weight? To answer this, we'll fo
us our attention on asli
e of the 
on�guration as follows:

Hopefully, you'll be able to re
ognize this as our lever diagramfrom page 18. In fa
t, a wheel and axle form a 
ontinuously rotatinglever! In this 
on�guration, the 
enter of the axle (and wheel) is



30 CHAPTER 4. THE WHEEL AND AXLEthe ful
rum, ea
h radius of the axle is a load arm, and ea
h radiusof the wheel is an e�ort arm.From our earlier analysis of levers, we know that if the radiusof the wheel is four times the radius of the axle, we will only haveto use one quarter of the for
e required to lift the weight, but mustapply that for
e through four times the distan
e (the 
ir
umferen
eof the wheel as opposed to the 
ir
umferen
e of the axle). In asimilar way, if we 
an apply four times the for
e required to turnthe axle, then the length of travel of a point on the outer edge ofthe wheel (around the 
ir
umferen
e) will be four times as far asthe motion of a point on the surfa
e of the axle. It's no wonderthat vehi
les with wheels 
an move so fast!Now, let's take a 
loser look at pushing a 
art or wagon and seewhat happens with the axles atta
hed to the 
art:

As we push the 
art, it applies the for
e of our push to the axlesthrough the atta
hment points. The fri
tion between the wheelsand the ground 
auses a resistive for
e to be applied to the wheelsat the point where they tou
h the ground. The two opposing for
es,one on the axle pushing forward, the other on the outer edge of thewheel pushing ba
k 
ause the wheel to rotate.The main di�eren
e between rotating logs under a blo
k, andwheels and axles on a 
art, is that the axles are held in pla
e by abra
ket, a bearing1, or some other material that will tou
h the axle1A bearing is an obje
t whose purpose is to provide a surfa
e to take on (withoutyielding) the for
e of 
onta
t of some other obje
t.



31as it rotates. This will introdu
e the resistive for
e of fri
tion in adire
tion that opposes motion of the axle2:

This 
on
entrates the fri
tion to the points of atta
hment forthe axles. We 
an redu
e the fri
tion at these isolated pla
es withvarious te
hniques that in
lude making the surfa
es smooth, hard,and slippery. Here is a devi
e that, in addition, utilizes the freelyrolling log idea, �xing balls around the axle with a spe
ial bra
ketthat allows the balls to rotate almost freely:

2Rather than draw a bun
h of little arrows all along the 
ir
umferen
e of the axle, Ijust sort of joined them together into a bigger 
urved arrow. Most of the 
onta
t for
e andfri
tion will o

ur on the top half of the axle.



32 CHAPTER 4. THE WHEEL AND AXLEHowever, even without any spe
ial devi
es or attention to re-du
ing fri
tion (other than making sure the hole is big enough tolet the axle to rotate freely), the rotating lever 
on�guration makesthe wheel and axle work. The multipli
ation of for
e due to a largewheel radius 
ompared to a small axle radius 
an easily overwhelma small fri
tional for
e resisting the rotation.Before we end the 
hapter, let me mention that the 
ontinu-ous 
ir
ular motion of the wheel and axle is so useful that it hasspawned three di�erent 
lasses of simple ma
hines. The �rst arerope and pulley systems that we'll take a 
loser look at in the next
hapter. The se
ond are belt and pulley systems that link tworotating pulleys together using a �exible 
onne
tor and fri
tion.The third 
lass lo
ks rotating wheels (
alled gears) together withinterlo
king teeth.Now, here are some exer
ises for you to 
he
k your understand-ing of the wheel and axle.



EXERCISES 33Exer
ises1. Consider the blo
k and log diagrams on pages 27 and 28. Howmany 
ir
umferen
es of a wheel does a blo
k move when thewheel rotates two 
omplete revolutions?2. For this exer
ise3 you need a 
ouple of di�erent sized wheelsand some string.(a) Loop the string on
e around the 
ir
umferen
e of the �rstwheel so that you have a length that represents the 
ir-
umferen
e of the wheel. Measure the 
ir
umferen
e ofthe wheel by measuring the string.(b) Measure the diameter of the wheel (perhaps as its heightwhen pla
ed in a rolling position on a table).(
) Find the ratio between the 
ir
umferen
e and the diame-ter of the wheel:(d) Repeat parts (a), (b), and (
) for the se
ond wheel. Arethe values similar?(e) What do you think would be the 
ase for a third wheelwith a di�erent diameter?3. Consider fri
tion brakes for a bi
y
le wheel having a 32 in
hdiameter rim and a 
on
entri
 (having the same 
enter) 8in
h diameter dis
.(a) All other things being equal, how mu
h more e�e
tive arebrakes on the rim of the wheel than brakes on the 8 in
hdiameter disk?(b) All other things being equal, how mu
h more fri
tion sur-fa
e area must the dis
 brakes have to be as e�e
tive asthe brakes on the rim?(
) What is another way of making the dis
 brakes more ef-fe
tive without 
hanging either their distan
e from the
enter, or their fri
tion surfa
e area?3Thanks to Leo Ri
e for this exer
ise.



34 CHAPTER 4. THE WHEEL AND AXLE4. Suppose a water wheel, through the 
ombination of kineti
energy of water falling into and the resulting weight of water inthe bu
kets, 
an supply 50 pounds of for
e at a radius of 6 feet.Suppose further that the fri
tion of the wheel is negligible.(a) Torque is a quantity, similar to work, that we de�ne asthe produ
t of two terms: 1) the radius of the 
ir
le of ro-tation, and 2) the for
e at a point on the 
ir
le of rotation,in the dire
tion of the 
ir
umferen
e of the 
ir
le:Torque = Force × RadiusWhat is the torque supplied by the water wheel in foot-pounds?(b) Suppose the water wheel is used to lift weights at vari-ous speeds by 
onne
ting the axle to di�erent sized axleswith ropes to lift them. Fill in the missing values in thefollowing table for the maximum weight 
apable of beinglifted by the water wheel using axles of the various spe
i-�ed sizes.Max Load Radius Torque60 pounds300 pounds 3 feet1 foot6 in
hes3 in
hes12 feet



Chapter 5
Rope and Pulley Systems
In this 
hapter we'll take a look at a simple ma
hine that is thought1to be invented by Ar
himedes of Syra
use about 250 BC and isstill in use, espe
ially on ships with sails, even today. This simplema
hine is 
onstru
ted out of a rope (or some similar strong, thin,�exible, but non-stret
hable substan
e) and spe
ial wheels 
alledpulleys that have grooves for the rope around their 
ir
umferen
e.The groves on a pulley keep the rope from slipping o�. One possible
onstru
tion might look something like this:

1http://en.wikipedia.org/wiki/Blo
k_and_ta
kle35



36 CHAPTER 5. ROPE AND PULLEY SYSTEMSNoti
e the two groups of pulleys: one group atta
hed to anoverhead immovable obje
t (su
h as an ar
h, 
eiling rafter, or shipspar) and another group below, fastened together with a beam thatis bearing some load to be lifted. The basi
 idea is to pull the ropein order to lift the obje
t atta
hed to the bottom set of pulleys.We arrange the system so that we pull down on the rope to lift theload, using our full body weight of for
e.Before we 
an �nd out how mu
h easier this rope and pulleysystem makes lifting things, we need to address a pra
ti
al issuethat hampers the proper operation of the 
onstru
tion shown above.What we would like to have happen when we pull on the rope,is for the beam 
onne
ting the pulleys to move up, staying parallelto the ground. Can you guess what will really happen? Wheredoes the rope �rst start to pull on the lower beam? Can you �ndthe pulley that will �rst feel the lift from the rope? It is the oneon the left. It will start to move up before the one on the right ina way that will minimize the lifting of the load:

Making the devi
e as 
ompa
t as possible eliminates this e�e
tas well as making it easier to transport, atta
h, and �t into pla
e.The pulleys are 
ollapsed onto two axles, one at the top, and one



37at the bottom, yielding the arrangement given to us by Ar
himedesthat we 
all a blo
k and ta
kle shown below (the left view showspulley edges, the right view shows pulley 
ir
umferen
es):

The blo
k and ta
kle allows uniform lifting of the axle and uni-form shortening of the rope segments 
onne
ting the upper pulleysto the lower pulleys. In order to more easily visualize and under-stand how this simple ma
hine helps us work, we'll use the �rstdiagram where the pulleys are separated, even though in pra
ti
ethey'll be 
on�gured into the blo
k and ta
kle arrangement.Let's start by 
onsidering lifting a 24-pound obje
t up one foot.We re
all from 
hapter 2 the work equation:Work = Force × Distan
eIf we plug in 24 pounds for Force and 1 foot for Distan
e we endup with 24 foot-pounds for the amount ofWork. Now, let's see howthis works with a pair of pulleys above and a pair below:



38 CHAPTER 5. ROPE AND PULLEY SYSTEMS

In keeping with the lever terminology, we'll 
all the line that wepull the e�ort line, and the lines that run from pulley to pulley (orpulley to �xed atta
hment) load lines. In the 
ase shown above, wehave four load lines. Using this 
on�guration to lift the 24 poundweight up 1 foot, we 
an see that all of the load lines must 
ontra
tby approximately2 one foot. This means that we must pull thee�ort line approximately 4 feet.We now assume that the pulley and axle have minimal fri
tionand invoke our work 
onservation prin
iple to reason that the workof pulling the e�ort line is the same as the work of lifting the load.Lifting the 24 pound weight by 1 foot (ignoring the little fri
tionin ea
h pulley) is 24 foot-pounds. We also know the distan
e wemust pull the e�ort line is 4 feet. Plugging these values into thework equation
24 foot-pounds = For
e × 4 feetwe 
an see that the for
e required is only 6 pounds. In other words,the rope and pulley system redu
ed the for
e required to lift the2The more the upper pulleys are dire
tly over the lower ones, as in a blo
k and ta
kle,the 
loser to one foot the rope segments must move.



39obje
t by a fa
tor of 4. Furthermore, we 
an see that regardless ofthe obje
t weight, the same redu
tion fa
tor of 4 will apply, be
ausethere are exa
tly 4 load lines over whi
h the e�ort is evenly spread,and this in
reases the distan
e over whi
h the redu
ed for
e mustbe applied.As with the other simple ma
hines, we 
an see that when thework remains the same, the for
e redu
tion and distan
e magni�-
ation are linked as a 
onsequen
e of the work equation:Work = Force × Distan
eWhen we keep Work 
onstant and redu
e Force by some fa
tor,then Distan
e must in
rease by that same fa
tor to keep Work
onstant.This all assumes that we have ideal pulleys, that there is mini-mal fri
tion between ea
h pulley and its axle. Re
all our dis
ussionof fri
tion for the wheel and axle in 
hapter 4. However, how wouldwe have to modify the work equation if the fri
tion be
omes signif-i
ant? For more on this try exer
ise 8.Before you dig into the exer
ises, let me point out the advantageof using even just a single overhead pulley. Even though there isonly one load line and one e�ort line, with this 
on�guration you
an more easily lift your body weight weight worth of load. Eithergrip the line and pull down with all your body weight, or tie a loopin the e�ort line a foot or two o� the ground and stand in it. Foran added twist, see exer
ise 7.



40 CHAPTER 5. ROPE AND PULLEY SYSTEMSExer
ises1. Suppose you weigh 80 pounds, and you have a 4-load-line blo
kand ta
kle atta
hed to a sturdy beam in your garage. Whatis the most you 
an lift using only your own weight?2. Draw a rope and pulley system with 2 load lines.3. Draw a system with the most load lines using 3 pulleys.4. Draw a pulley and rope system with 5 load lines.5. Assuming downward e�ort, does a rope and pulley system withan even number of load lines an
hor above or below?6. How many pulleys are ne
essary for a system with n load lines?7. Suppose you weigh 70 pounds, that you have a 4-load-lineblo
k and ta
kle atta
hed to a sturdy beam in your garage.You need to lift a 320 pound obje
t. How mu
h weight do youhave to put in your ba
kpa
k to get the job done?8. Suppose you don't have any pulleys, but do have: a rope, theobje
t you want to lift has a smooth, sturdy, axle-like handle,and there is a smooth, sturdy, axle-like bar overhead you 
anuse to lift the obje
t. Denote the weight of the obje
t as Fand the distan
e you need to lift it as d.(a) If you rig a 4-load-line blo
k and ta
kle (without the pul-leys, 
all ea
h pla
e you'd want a pulley a fri
tion-point),how mu
h weight will ea
h fri
tion-point feel?(b) Assume that the fri
tion between the rope and axle isproportional to (say one tenth of) the weight felt. Howmu
h work is 
onsumed by the fri
tion at the fri
tion-point 
losest to the rope an
hor? The se
ond 
losest?The third 
losest? The remaining one?(
) What is the total work 
onsumed by all the fri
tion points?(d) Give an expression using F , d, and the fri
tion 
oe�
ient
c = 1/10 for the total work required to lift the obje
t.



Appendix ASimple Equations
Just as 
on
ise notes fo
us our attention and 
ollapse a 
ompli
atedsubje
t into a 
omprehensible group of 
on
epts, so do equationshelp us understand and reason about relationships. Think abouthow the work equation helps us understand the relationship be-tween work, for
e, and distan
e. Embedded in the equation is notonly our de�nition of work, but also the restri
tion: that to keepwork 
onstant, a redu
tion in for
e is ne
essarily a

ompanied byan in
rease in distan
e over whi
h it is applied.In this appendix we'll follow in Ar
himedes' footsteps and usethe level in a purely abstra
t way to further our understanding ofequations. Hopefully, this will help visualize what equations meanand how to work with them. Spe
i�
ally, we'll explore how a trueequation is like a spe
ial kind of lever, a beam balan
e that isperfe
tly level (horizontal):

41



42 APPENDIX A. SIMPLE EQUATIONSA beam balan
e has the left and right arm of the same lengthso that weights on ea
h side are equal when the beam is horizontalor level. The horizontal or level position of the balan
e 
orrespondsto truth of the equation. If the beam is horizontal, the weights areequal and the equation is true. The weight on the left hand sideof the balan
e 
orresponds to the numeri
 value on the left handside (LHS) of the equation, the weight on the right 
orresponds tothe numeri
 value on the right hand side (RHS) of the equation.In the 
ase shown above, the boxes on the left hand side representthe variable, or unknown quantity, x. The beads on the right handside represent the integer 6.Let's explore this a bit further. We 
ould, for instan
e, add onebox to ea
h side and maintain the balan
e. This would 
orrespondto the equation: 3x = x+6. (In this appendix, I'll often write prod-u
ts without using an expli
it multipli
ation sign, or sometimes asa dot, to avoid 
onfusion with the variable x.)

In prin
iple we 
ould add any number of boxes, say n of them,to ea
h side and maintain the balan
e: 2x + nx = nx + 6. This
orresponds to a prin
iple that goes ba
k more than 2000 years toEu
lid. He 
aptured it as Common Notion 2 in Book I of TheElements that 
an be translated as1: �If equals be added to equals,the wholes are equal.�1See Book I Common Notion 2 of Heath's volume 1 of �Eu
lid: The Thirteen Booksof the Elements.� The 
ommon notions are general prin
iples used freely throughout theproofs (sequen
es of justi�
ations for the truth) of the propositions.



43In a similar way, we 
ould add equal numbers (beads), say 3, toea
h side to get: 2x + 3 = 9:

Or subtra
t equal amounts from ea
h side to maintain the bal-an
e. Am I talking about the equation (x's and numbers), thebeam balan
e (boxes and beads), or both? Does it matter? Per-haps our analogy breaks down when we try to take away more thanis present on the balan
e to end up with negative weight, but theprin
iple still holds for an equation.Alternatively, when starting from a balan
ed state, we shouldbe able to double both the LHS and RHS and maintain the balan
e.This 
orresponds to the equation: 2(2x) = 2(6), whi
h we 
an writeas: 4x = 12:

However, in prin
iple, we 
ould triple, quadruple, or, more gen-erally, multiply by n both the LHS and RHS and maintain thebalan
e: n(2x) = n6.



44 APPENDIX A. SIMPLE EQUATIONSSimilarly, we 
an divide ea
h side in half, leaving one half onea
h side and maintain the balan
e. This 
orresponds to the equa-tion: x = 3. Hopefully, you 
an begin to see how useful theseoperations are for solving simple equations.On
e again our analogy 
auses some di�
ulty when generalizingdivision of both sides by any number, where in the 
ase of thebalan
e we think in terms of whole obje
ts, but again it remainstrue for equations: 2x/n = 6/n as long as n is not zero.We 
an even 
ombine the multipli
ation (by n) and division (bynon-zero d) into multipli
ation on both sides by one number, thefra
tion n/d:
n

d
(2x) =

n

d
6Let's summarize all these operations that maintain the truth ofan equation with the following symboli
 rules by saying that if wehave some equation:

LHS = RHS for example 2x = 6then for any number c, whether it is positive, negative, integer,fra
tional, or de
imal (in
luding de
imal numbers that 
annot bewritten as fra
tions), the following are also true:
LHS + c = RHS + c for example 2x + 4 = 6 + 4

LHS − c = RHS − c 2x − 6 = 6 − 6

c(LHS) = c(RHS) 5(2x) = 5 · 6and for non-zero c:
LHS

c
=

RHS

c
for example

2x

2
=

6

2



EXAMPLE 1: A WORD PROBLEM 45Example 1: A Word ProblemOur �rst example goes like this: �Kate is two years older than hersister Madeline and three years older than her brother Doug. Alltogether, their ages add up to 49. How old is Kate?�To begin, we need to write this down symboli
ally. We'll 
hooseour variable x to be Kate's age in years. Then Madeline's age will bex-2 and Doug's age will be x-3. We 
an write down the informationgiven to us in the following equation:
x + (x − 2) + (x − 3) = 49We'll start by 
olle
ting the variables on the LHS, as well as thenumbers. We have three x's altogether, and we are taking away�ve altogether, so we have:

3x − 5 = 49Our general strategy will be to perform operations on the equa-tion until we end up with x all by itself on the LHS giving us theanswer. Our next step will be to add 5 to ea
h side of the equation,and then we'll dived both sides by 3 to get the answer:
3x − 5 = 49

3x = 54

x = 18Finally, we'll 
he
k our answer by substituting the values ba
k intoour original equation:
18 + 16 + 15 =? = 49



46 APPENDIX A. SIMPLE EQUATIONSExample 2: Area of TrianglesLet's examine the area of triangles using what we know about re
t-angles. We'll start by re
alling that the area of an 8 by 4 re
tangleis 8 · 4 = 32 squares (units of area):

In a similar way, any re
tangle with sides having whole-numberlengths n and m will have the area: nm (remember, this means ntimes m). We 
an extend this same area rule to re
tangles withsides of any positive lengths b and h using the same expression: bh.Let's write this as the equation: area� = bh.

Now if we 
an agree that drawing a diagonal a
ross a re
tanglesplits it into two equal 2 triangles, then we we'll have the area of there
tangle being twi
e the area of the triangle:2In modern language, we say they are 
ongruent. Eu
lid Book I proposition 4 tells usthese triangles are equal sin
e: 1) line segment AB is 
ongruent to CD, 2) BC is 
ongruent toDA, and 3) angle ABC is the same square angle as CDA. See Heath's �Eu
lid: The ThirteenBooks of The Elements.� This is 
ommonly known as the SAS rule, and even thoughEu
lid in
ludes it as a proposition with an argument for its truth, it really is a postulate oraxiom, something that we simply a

ept as true.



EXAMPLE 2: AREA OF TRIANGLES 47area� = 2area△However, we also know that the area of the re
tangle is: bh.We now use a prin
iple whose truth is beyond question in bothalgebra and geometry, Eu
lid's3 Common Notion 1: Things whi
hare equal to the same thing are also equal to one another . Thismeans that we 
an substitute the produ
t bh in pla
e of the areaof the re
tangle area�:
bh = 2area△We 
an now divide both sides of this equation by 2 (that's thesame as multiplying by 1/2) to �nd the area of a triangle with asquare 
orner at the base, base length b, and height h at the square
orner as: area△ =

1

2
bhSquare 
orners are spe
ial in geometry. Eu
lid4 
alled themright angles, de�ned so that adding two of them makes a straightline, and assumed ea
h right angle is equal to any other. We 
alla triangle that has a right angle as a 
orner a right triangle, andjust as a right angle is spe
ial, so is a right triangle.So, how do we �nd the area of a triangle that doesn't have asquare 
orner? Just as we used re
tangular area to �gure out thearea of a right triangle, we'll use what we know (area of a righttriangle) to �gure out what we don't (area of a triangle without asquare 
orner at the base). Let's start with the 
ase of a trianglewith the peak over the base. We'll just draw a verti
al line downfrom the peak to the base to end up with two right triangles:3See Book I Common Notion 1 of Heath's volume 1 of �Eu
lid: The Thirteen Books ofThe Elements.�4See Book I De�nition 10 and Postulate 4 of Heath's volume 1 of �Eu
lid: The ThirteenBooks of The Elements.�
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First we'll express the area of the original triangle as the sum ofthe area for two right triangles, then we'll substitute the expressionsfor these (sin
e we know how to 
al
ulate them), and then we'llregroup: area△ = areaL + areaR

=
1

2
bLh +

1

2
bRh

=
1

2
(bLh + bRh)

=
1

2
(bL + bR)h =

1

2
bhWe 
an fa
tor out 1/2 and h and group the addition of bL + bR forthe same reasons that 7 · 10 + 7 · 3 = 7 · 13.For the remaining 
ase of a triangle with the peak not over thebase, let's still draw a line down verti
ally to the point where itmeets the extension of the triangle base.



EXAMPLE 2: AREA OF TRIANGLES 49For our 
al
ulation this time, we'll 
al
ulate the area of triangleABC as the area of triangle ADC minus the area of triangle BDC:area△ABC = area△ADC − area△BDC

=
1

2
bh − 1

2
bRh =

1

2
(bh − bRh)

=
1

2
(b − bR)h =

1

2
bLhWe begin by �rst substituting the expressions for the area of theright triangles. The next steps are to again fa
tor out both 1/2 and

h and group the subtra
tion of bR from b. Again, we 
an do thisfor the same reasons that 5 · 20− 5 · 2 = 5 · 18. Next, sin
e b − bRis just bL, we substitute bL for b − bR to get our result.We have found that, just as for right triangles, ea
h trianglewithout a right angle (peak over the base, peak outside base), thearea is also one half of the base times the height. This also helpsus understand the meaning of the height of a triangle. It is thedistan
e that the peak of the triangle rises above the base along asquare 
orner (or right angle). In the diagram below, the 5 trianglesare all on the same base and have the same height (peaks on thedotted line) and so have equal areas5:
Now, try your hand at the following exer
ises to pra
ti
e and
he
k that you 
an work with equations. If you are not sure ofyour answer, don't let it go, be sure to 
he
k with someone whowill know and 
an help you understand it.5Heath's translation of Eu
lid's proposition 37 of Book I is: Triangles whi
h are on thesame base and in the same parallels are equal to one another. Our intuitive approa
h tounderstanding this result is algebrai
 whereas the beauty of Eu
lid's approa
h is in the self-
ontained system of Eu
lidean Geometry that derives results from de�nitions, postulates,
ommon notions, and previously obtained results using dedu
tive reasoning, a system thathas been a su

essful model for mathemati
s and formal reasoning for 2300 years.



50 APPENDIX A. SIMPLE EQUATIONSExer
isesSee also exer
ises 1 and 2 on page 23 of Chapter 3.1. Solve the following equations for x (and 
he
k your answers):(a) x + 3 = 15(b) x/4 = 12(
) x/4 + 3 = 15(d) 2x − 3 = 17(e) x − 7 = 3x − 192. Kate is two years older than her sister Madeline and four yearsolder than her brother Doug. All together, their ages add upto twi
e Kate's. How old is Kate?3. This exer
ise explores an equations for s
ale models. Supposethat you know the dimensions of an obje
t su
h as a bridge(perhaps from ar
hite
tural drawings), and want to make amodel of it that is smaller, so that ea
h pie
e of the model issmaller than in the real bridge by the same fa
tor. Let's usethe following equation where the size of a pie
e r in the realbridge is multiplied by the s
ale fa
tor f to give the size of thepie
e m in the model:
r · f = m(a) Suppose that the real bridge is 500 meters long, and thatyou want to build the model so that it is exa
tly 1 meterlong. Substitute the numbers into the s
aling equationand solve for the s
ale fa
tor f .(b) Find out how big a model support should be if that sup-port is 25 meters long in the real bridge, by substitutingthe s
ale fa
tor you found in part (a) into the s
aling equa-tion for f , substituting the real length 25 meters in for r,and solving for m.



EXERCISES 51(
) Convert the size of the model pie
e your found in part (b)from meters to 
entimeters by multiplying it by 100.4. This exer
ise asks you to 
onvert the lever-work equation ofChapter 3 page 20:Load ·Work_Distan
e = E�ort · E�ort_Distan
einto a (perhaps) more usable form by using the s
aling equa-tions:Work_Distan
e · S
ale_Fa
tor = E�ort_Distan
eLoad_Arm · S
ale_Fa
tor = E�ort_Arm(a) First, divide the �distan
e� s
aling equation byWork_Distan
eto �nd the �rst expression for the S
ale_Fa
tor .(b) Se
ond, divide the �arm� s
aling equation by Load_Armto �nd the se
ond expression for the S
ale_Fa
tor .(
) Next, divide both sides of the lever-work equation byWork_Distan
e and group the distan
e terms into a fra
-tion on right hand side.(d) Now, re
ognize the fra
tion on the right hand side ofthe equation you get in (
) as the �rst expression forthe S
ale_Fa
tor you found in part(a), and substitute inits pla
e the se
ond expression for the S
ale_Fa
tor youfound in part (b).(e) Finally, multiply the equation you �nd in part (d) byLoad_Arm to end up with the following leverage equa-tion: Load · Load_Arm = E�ort · E�ort_Arm(f) Suppose you have a 20 pound bag of grass seed, pla
ed ona teeter-totter 6 feet from the pivot point, and that youbalan
e the teeter-totter when you stand 1 and 1/4 feetfrom the pivot point. How mu
h do you weigh?
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Appendix B
Ve
tors
In this appendix, we examine more thoroughly the algebra of ve
-tors, in
luding how adding ve
tors in a line redu
es to the algebraof numbers (s
alars). Our �nal stop will be the full ve
tor algebraformulation of the work equation.We've already talked in 
hapter 1 on page 3 about how for
eshave both a magnitude (amount of push or pull) and a dire
tion.How they are 
onveniently represented by arrows, and how thesearrows form an algebrai
 system of what are known in mathemati
sand physi
s as ve
tors. Sometimes, instead of arrows, people referto the representations as dire
ted line segments. In this appendix,we'll take a 
loser look at this algebrai
 system of ve
tors, startingwith a di�erent example, one that may seem more natural thanfor
es.You've already had a 
ouple of hints about this more familiarsystem of ve
tors. In fa
t, you may already have guessed what itis. Re
all from 
hapter 1 when we were talking about two for
es
an
eling ea
h other out and adding up to zero. Now think aboutthe part of 
hapter 2, lifting a stone twi
e as far, whi
h mightsuggest adding the lift distan
es. What am I talking about? I amtalking about straight-line displa
ements: a motion, or movement,some distan
e along a straight line. We 
an even dispense with the�straight line� restri
tion if we are willing to 
onsider only the start53



54 APPENDIX B. VECTORSand end points of the motion (though, in more 
ompli
ated 
ases,the intermediate path 
an make a di�eren
e).Ea
h displa
ement 
an be represented as a 
ombination of mag-nitude or size (the distan
e from the start to end point) and a di-re
tion (from the start point to the end point). This 
ombinationof magnitude and dire
tion of displa
ements 
an be represented byan arrow with the tail at the start point and the tip at the endpoint.

There are six ve
tors represented in the diagram above. Four ofthem are labeled with their dire
tion1 and length and the remaining2 ve
tors are labeled A and B. The diagram is meant to depi
tthree dimensional obje
ts. To understand the diagram, we imaginethat north is straight ahead into the page, so the displa
ementve
tor N 7 feet is 7 feet into the page (in the dire
tion of the pagein front of us). We imagine the ve
tor S 3 feet points out of thepage (from the page towards us) 3 feet, the ve
tors A and B pointout of the page to our right, and the ve
tors U 2 feet and E 4 feetlie in the plane of the page.1Let's use the �rst letter of the dire
tions : Up, Down, North, South, East, andWest.



SCALING VECTORS 55With displa
ements as our intuitive guide to ve
tors, let's diveright in and talk about algebrai
 operations involving ve
tors, start-ing with s
aling.S
aling Ve
torsThe 
on
ept of s
aling an obje
t is, essentially, to 
hange its sizewith all parts either growing or shrinking by the same amount sothat the shape stays the same. We asso
iate this 
on
ept with themathemati
al operation of multipli
ation by a number 
alled thes
ale fa
tor, or s
alar, that represents this shrinking or grow-ing amount. For example, 
onsider making the displa
ement ve
-tor S 3 feet twi
e as long. This would be
ome a displa
ement of
S 6 feet. We 
an write this as:

2(S 3 feet) = S 6 feetIn a similar way we 
ould s
ale the ve
tor A by a (s
ale) fa
torof 2 writing the result as: 2A. Or we 
ould make it half as longvia any one of: 1/2A, 0.5A, or A/2. Moreover, we 
an s
ale anyof the ve
tors, say B, by any s
alar c as: cB. Noti
e that s
aling ave
tor 
hanges its length, but not its dire
tion (depending on howyou think about opposite dire
tions). Let's take a 
loser look atthis by fo
using on the NS line, ignoring measurement units likefeet or meters for the time being, with the ve
tor N 1 pointing tothe right:
Noti
e that s
aling by 2 gives N 2, s
aling by 4 gives N 4, ands
aling by 0 gives a ve
tor with 0 length. Noti
e that this lastve
tor has no length. In this sense it also has no dire
tion. On the



56 APPENDIX B. VECTORSother hand, it 
an have any dire
tion we 
are to 
hoose, and sin
ethere is no length, it doesn't really matter. For these reasons, let'sdenote this zero ve
tor using just its length, 0. To distinguishthe zero ve
tor from a s
alar (we haven't de�ned multipli
ation oftwo ve
tors yet, and when we do, it will be di�erent from s
aling),we'll denote the zero ve
tor in boldfa
e as: 0.Now, this last s
aling result will be true for any of our for
e ordispla
ement ve
tors. S
aling any of these ve
tors, V, by zero willgive the zero ve
tor:
0V = 0Next, noti
e that s
aling N 1 by 2 gives N 2, and that s
aling

N 2 by 2 gives N 4. We 
an write this as: 2(2(N 1)) = 2(N 2) =
N 4 = 4(N 1). This is another result that will hold for any of thefor
e and displa
ement ve
tors, V, and any s
alars a and b:

a(b(V)) = (ab)VWhat about s
aling by negative numbers? If we think of mul-tiplying by a negative number as giving a s
aled ve
tor in the op-posite dire
tion, 
hanging a north ve
tor into a south ve
tor, thenwe will keep the s
aled ve
tors on the line so that integer multiplesof N 1 
orrespond to integers on the number line. In terms of ourve
tors, we'll have: −1(N 1) = S 1. In a similar way, we 
an thinkof multiplying the ve
tor S 1 by negative 1 giving the ve
tor in theopposite dire
tion: −1(S 1) = N 1.This gives us a geometri
 interpretation of multiplying by minusone as 
hanging to the opposite dire
tion. Combining these last twoequations we have: −1(−1(N 1)) = −1(S 1) = N 1 = 1(N 1).This lets us interpret the equation −1 × −1 = 1 as: 
hanging tothe opposite dire
tion twi
e is the same as not 
hanging at all .We'll soon see that this interpretation will 
ontinue to makesense when adding ve
tors, whi
h is our next topi
.



ADDING VECTORS 57Adding Ve
torsThe rule for adding ve
tors is essentially the same as 
ombining dis-pla
ements when you think about it in the following manner. Tohelp us visualize, let's be spe
i�
 and 
onsider the displa
ements
N 3 feet and E 4 feet. How should we 
ombine these two displa
e-ments? Hopefully, it will seem natural to move north 3 feet andthen move east 4 feet:

The result of this 
ombined displa
ement is just the displa
e-ment from our starting point, the origin, to the ending point. We
an think of moving the tail of the se
ond displa
ement to the tipof the �rst displa
ement. This is the rule we use to add two ve
tors
A and B: the sum of the ve
tors A and B is from the tail of Ato the tip of B when B's tail is moved to the tip of A:



58 APPENDIX B. VECTORSWhat if we had moved the tail of ve
tor A to the tip of ve
tor B.The resulting sum is the same: A+B = B+A. Why? The reasonis that the resulting sum ve
tor is the diagonal of the parallelogramformed from A and B regardless of whether we move along A or
B �rst. In fa
t, the rule for adding ve
tors is often known as theparallelogram rule or parallelogram law of ve
tor addition.Furthermore, this result will be true for any of our displa
ementve
tors, U and V (for
e ve
tors too, but let's not try to 
ombinefor
es and displa
ements just yet):

U + V = V + UNow let's think about what this means if the ve
tors lie onthe same line. In this 
ase the parallelogram 
ollapses into a linesegment. The ve
tors being added as well as the resulting sumve
tor lie on the line, and as long as we keep that line in mind,the algebra of these ve
tors redu
es to the algebra of their signedlengths. We pi
k one dire
tion of the line as positive, like we didwith N 1 for the s
aling example, and then assign lengths in theother dire
tion as negative, the length of S 1 being -1:
Finally, sin
e you now know how to s
ale and add ve
tors, youalso know how to subtra
t them. For example, if you want to knowabout A−B, just think of it as A+(−B) where, of 
ourse, −B isjust B s
aled by -1, that is −1B, whi
h we saw above is B in theopposite dire
tion.Dot Produ
tTo get to our �nal destination for this appendix, we need one lastalgebrai
 operation that 
ombines two ve
tors to give a s
alar, a



DOT PRODUCT 59sort of multipli
ation of ve
tors. This operation is typi
ally 
alledthe dot produ
t of ve
tors and takes its name from the notationwith whi
h it is usually written. Given two ve
tors, A and Btheir dot produ
t is written as A • B, and we 
an use the arrowrepresentations to think of it geometri
ally as follows:

First, proje
t the ve
tor B at a right angle onto the line ofve
tor A (so that the line from the tip of B to the line of A makesa square 
orner). Then multiply this signed length (the dire
tion of
A is positive), by the length of A. For example, the value of A•Bin the diagram above is positive, be
ause the part of B proje
tedonto A is in the dire
tion of A. The value of A • (−B) is negativebe
ause the part of−B proje
ted onto A is in the opposite dire
tionof A and so has a negative signed length (with respe
t to A):



60 APPENDIX B. VECTORSThis brings us 
lose to our �nal destination. The essential ob-servation is that the dot produ
t 
aptures exa
tly the properties ofwork that we dis
overed ba
k in Chapter 2. First, it 
aptures themultipli
ative nature of the two ve
tors it 
ombines. For instan
e,if the ve
tor A is twi
e, half, or �ve times as big, then so is theprodu
t A • B. Similarly for the ve
tor B. Just what we needfor doubling the work by doubling the lift distan
e or the obje
tweight.Se
ond, noti
e that the dot produ
t throws away the part of theve
tor B that is not in the dire
tion of (the line of) A. Think of theve
tor B as being formed as the sum of a ve
tor B‖ in the line of
A, and a ve
tor B⊥ at a right angle to A. The dot produ
t keepsonly the part B‖ in the line of A. This is why the dot produ
t isknown more fun
tionally as the inner produ
t2 of the ve
tors Aand B.

Now, re
all how we disregarded the horizontal motions (dis-pla
ements) of obje
ts being lifted be
ause they did not feel theweight of the verti
al for
e of gravity. Using the above diagram to2You may imagine a multipli
ation of the ve
tors A and B 
omposed from A and thepart of B at a right angle to A that is 
alled the outer produ
t of A and B. Inter-estingly, this produ
t is often denoted with a wedge, A ∧ B, and is also frequently 
alledthe wedge produ
t. It is also known as the exterior produ
t and leads to fantasti
allyinteresting and produ
tive areas of mathemati
s known as exterior (or Grassmann) algebraand di�erential forms. However, perhaps even more interesting, powerful, and produ
tiveis the 
ombination of the inner and exterior produ
t known as the geometri
 produ
t:
AB = A • B + A ∧ B. Lu
kily, there is a great book by David Hestenes titled New Foun-dations for Classi
al Me
hani
s that you 
an 
onsult for more on this.



DOT PRODUCT 61represent this would have the verti
al dire
tion Up in the dire
tionof A, with A representing the for
e of our lift (the negative of thegravitational for
e on the obje
t), B representing the resulting dis-pla
ement of the obje
t, B‖ representing the verti
al displa
ement,and B⊥ representing the horizontal displa
ement.Finally, noti
e how the dot produ
t results in a s
alar: a numberhaving no preferred dire
tion. With all of this in mind we 
an nowsee that we 
an 
apture these properties of work in a ve
tor equationthat in
orporates our previous work equation into the followingve
tor work equation:
W = F • Dwhere W is the (s
alar) work done by applying the for
e ve
tor Fthrough the displa
ement ve
tor D.



62 APPENDIX B. VECTORSExer
isesHaving introdu
ed the geometri
 
on
epts asso
iated with ve
tors,I feel obligated to o�er these exer
ises to explain how to 
al
ulatewith them. Having said that, I would not be o�ended if you stophere and 
ome ba
k to this only when you feel either the need fora 
hallenge, or a burning desire to know how this all works.Cal
ulations with ve
tors are often more straight-forward whenthe ve
tors are spe
i�ed by their Cartesian 
oordinates3 (ratherthan with a dire
tion and length). This done by listing the 
o-ordinates of the point at the tip of the arrow. For instan
e, let'srestri
t our attention to the ve
tors that lie in the NS-EW planeand spe
ify ea
h ve
tor by a pair [x, y] of 
oordinates of the tip ofthe ve
tor. Let's let x be the east 
oordinate, and y be the north
oordinate. Then we have the following Cartesian 
oordinates forthe ve
tors from the NS-EW plane of our diagram on page 54:

3Cartesian 
oordinates are named after a fellow named René Des
artes who, like Isaa
Newton, lived hundreds of years ago. He thought that doing geometry ought to be easier thanthe Greek method espoused by Eu
lid, and went on to invent analyti
 geometry. For moreon this, or just for an intriguing story, 
he
k out Amir A
zel's Des
artes's Se
ret Notebook:A True Tale of Mathemati
s, Mysti
ism, and the Quest to Understand the Universe.



EXERCISES 63Let's take a look at how s
aling a ve
tor V = [x, y] by the fa
tor
c a�e
ts the 
oordinates:

Noti
e that, due to the similarity of triangle 0:V:x to triangle
0:cV:cx (and 0:V:y to0:cV:cy), 
hanging the length of V to cV
hanges x to cx (and y to cy):

cV = c[x, y] = [cx, cy]1. Fill in the entries of the following table, then plot the ve
torson a sheet of graph paper and label them:V 2V 0.5V -3V[x, y℄ [2x, 2y℄ [0.5x, 0.5y℄ [-3x, -3y℄0 10 -34 04 -3-2 0-2 -2



64 APPENDIX B. VECTORSNow, let's take a look at adding the ve
tors V = [x, y] and
U = [w, z] using Cartesian 
oordinates:

Noti
e that, as we move the ve
tor U to the tip of the ve
tor
V to form the sum V + U, we add w to x and z to y:

V + U = [x, y] + [w, z] = [x + w, y + z]2. Fill in the entries of the following table. On a sheet of graphpaper: plot and label the ve
tors, and sket
h the parallelo-grams:V U V+U[x, y℄ [w, z℄ [x+w, y+z℄0 1 2 00 -3 -2 24 0 -1 14 -3 -2 -2-2 0 1 0-2 -2 -1 -1



EXERCISES 65Finally, in order to �gure out how to 
al
ulate the dot produ
t,we'll need to know that for any ve
tors V, U, and T, and anys
alar c the dot produ
t has the following properties:
(dU) • (cV) = dc(U • V)

T • (V + U) = T • V + T • U

V • U = U • VOn
e we know these, we'll be able to �gure out (see exer
ise 6below) that for ve
tors V = [x, y] and U = [w, z]:
V • U = [x, y] • [w, z] = xw + yz3. Fill in the following table, and, on a sheet of graph paper:plot and label the ve
tors, proje
t the ve
tor U onto the lineof ve
tor V (use the 
orner of a separate sheet for the rightangle), and then (use a separate pie
e of graph paper likea ruler to) measure the proje
ted length, the length of V,multiply them together, and 
ompare results:V U V • U[x, y℄ [w, z℄ xw + yz0 1 2 21 -3 3 14 0 0 14 -3 0 1-2 0 2 2-2 -2 2 24. Noti
e that a

ording to our de�nition of the dot produ
t, thedot produ
t of a ve
tor with itself is just the length of theve
tor squared, sin
e the length of the proje
tion of a ve
toronto itself is the whole length of the ve
tor we start with. Thisallows us to 
al
ulate the length of a ve
tor V (a 
ommonnotation for this is |V|) as the square root of the dot produ
tof the ve
tor with itself:

|V| = Length(V) =
√

V • V



66 APPENDIX B. VECTORSFill in the entries of the following table:V V • V
√

V • V[x, y℄ x2 + y2
√

x2 + y20 11 -34 04 -31 1-5 12
a b5. This exer
ise explores the use of the dot produ
t to measureangles between ve
tors. Suppose we are given two non-zerove
tors V and U. Let's write ∡VU to represent the angle be-tween them. One di�
ulty we run into is that the dot produ
tin
orporates the length of the ve
tors into the produ
t, eventhough the angle between ve
tors does not 
hange with theirlength. To avoid this problem, we introdu
e the unit ve
tors

V̂ and Û in the dire
tion of V and U using the length
|V| and |U| of the ve
tors from exer
ise 4 as follows:

V̂ =
V

|V| =
1

|V|V and Û =
U

|U| =
1

|U|UWe have s
aled ea
h of the ve
tors so that it has unit lengthby dividing by its length. For example, we make a 2-unitve
tor half as big. We 
an now generate a measure for ∡VUusing V̂, Û, and the the dot produ
t as follows. For histori
alreasons we 
all this parti
ular measure the 
osine of theangle between the ve
tors V and U:
osine(∡VU) = V̂ • Û =
1

|V||U|V • UFill in the entries of the following table, and, on a sheet ofgraph paper, plot and label the ve
tors. Noti
e what happensto the 
osine value as the angle ∡VU goes on
e around a 
ir
lein the order listed in the table:
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V • V U √

U • U V • U Cosine(∡VU)[x, y℄ √

x2 + y2 [w, z℄ √
w2 + z2 xw + yz xw+yz√

x2+y2
√

w2+z21 0 1 01 0 12 51 0 4 31 0 1 11 0 3 41 0 5 121 0 0 11 0 -1 11 0 -1 01 0 0 -16. This exer
ise leads us from geometry to our Cartesian 
oordi-nate formula for the dot produ
t.(a) Convin
e yourself that (dU) • (cV) = dc(U • V) for var-ious c, d, V, and U by using the s
aling diagram on page63. Think of the horizontal line as the line of U withthe length of U being u, and how s
aling U by d 
hangesthe length from u to du. Noti
e how U • V = xu and
(dU) •V = xdu. Now noti
e how s
aling V by c 
hangesthe last one to (dU) • (cV) = cxdu = dcxu = dc(U •V).(b) Convin
e yourself that V • (U + T) = V • U + V • Tfor various V, U, and T by using the addition diagramon page 64. Think of the horizontal line as the line of Twith the length of T being t, and how the dot produ
t onthe left hand side is (x + w)t and on the right hand sidethe sum of the dot produ
ts is xt + wt.(
) Convin
e yourself that V •U = U • V for various V and
U as follows. Think of V • U and U • V, using part (a)as:

V • U = (|V|V̂) • (|U|Û) = |V||U|(V̂ • Û)

U • V = (|U|Û) • (|V|V̂) = |U||V|(Û • V̂)



68 APPENDIX B. VECTORSSin
e the lengths are just s
alars, |V||U| = |U||V|. Now,
onvin
e yourself that the following diagrams show that
V̂ • Û = Û • V̂ for various V̂ and Û:

You'll probably need Eu
lid's Book I Proposition 26 thatsays triangles with two angles and a side equal, are equal4(for the 
ase on the right, you need to know Book I Propo-sition 15 about verti
al angles being equal (or see Chapter3 Exer
ise 1)).(d) Next, introdu
e the ve
tors i = [1, 0] and j = [0, 1] andnoti
e that sin
e they form a right angle, ea
h proje
tsa length of 0 onto ea
h other, so that: i • j = 0 = j • i.Furthermore, sin
e ea
h is of unit length and the dot prod-u
t of a ve
tor with itself is the length squared, we have:
i • i = 1 = j • j.(e) Finally, noti
e that, due to the way s
aling and ve
toraddition work, we 
an write the ve
tors V = [x, y] and
U = [w, z] as:

V = xi + yj and U = wi + zj4This is more 
ommonly known as theAAS rule, and unlike the SAS rule, 
an be provenby staying stri
tly within the system of Eu
lidean geometry.



EXERCISES 69We 
an now evaluate the dot produ
t as follows:
V • U = (xi + yj) • (wi + zj)

(by 6b) = (xi + yj) • (wi) + (xi + yj) • (zj)

(by 6c) = (wi) • (xi + yj) + (zj) • (xi + yj)

(by 6b) = (wi) • (xi) + (wi) • (yj) + (zj) • (xi) + (zj) • (yj)

(by 6a) = wx(i • i) + wy(i • j) + zx(j • i) + zy(j • j)Now verify that when you plug in the 0's and 1's frompart (d) you get the result wx + zy whi
h is the same as
xw + yz.
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EXERCISES 73lished by Mi
hael Ward, 2010.I 
an't think of a more ex
iting way to 
ome to grips withfor
es, mass, a

eleration, velo
ity, and Newton's se
ond lawof motion (F = ma) than by �guring out how high your modelro
ket will go. This pamphlet gets you started with the 
al
u-lations and then helps you re�ne them to in
lude: 
orre
tionsfor air resistan
e (drag), non-
onstant thrust pro�les, de
reas-ing mass due to spent propellant, and even multiple stages.











For
es, Work, and Simple Ma
hinesSimple ma
hines have been helping us work sin
e beforewe 
ould write. They help us move things more easily anda
hieve more than we 
ould without them. They help uslift boulders, pry things apart, sta
k them together, trans-port obje
ts and ourselves.In order to understand a few of these simple ma
hines andhow they work we'll use some basi
 math and physi
s (in-trodu
ed as we need it).My hope is that on
e you know what these simple ma
hinesare, and how they work, you'll be able to see them at workin the world around you and put them to work for yourself.I also hope that on
e you see how easy it is, you'll start toapply the same prin
iples we use to understand these sim-ple ma
hines to other ma
hines and even more 
ompli
atedand subtle systems.


