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For Jane and her kids.



Prefae
Simple mahines have been helping us work sine before we ouldwrite. They help us move things more easily and ahieve morethan we ould without them. They help us lift boulders, pry thingsapart, stak them together, transport objets and ourselves.In order to understand a few of these simple mahines and howthey work we'll use some basi math and physis (introdued as weneed it).My hope is that one you know what these simple mahines are,and how they work, you'll be able to see them at work in the worldaround you and put them to work for yourself. I also hope thatone you see how easy it is, you'll start to apply the same prinipleswe use to understand these simple mahines to other mahines andeven more ompliated and subtle systems.AknowledgmentsThis pamphlet was inspired by Jane Kenney-Norberg and the LEGOPhysis lasses she developed and teahes at the Oregon EpisopalShool in Portland Oregon where daily she inspires and helps de-velop the potential of hundreds of hildren with bene�ts that in-rease with the more I learn about her programs, eduation, anddevelopment of the human brain.Speial thanks to Jane, Jimmy Springer, Kristen Haferbeker, theengaging, urious, and delightful LEGO Physis students and Teah-ing Assistants for giving me a hane to be a part of it all.I'd also like to thank Leo Rie and Asher Klathko for ideas forsome of the exerises.
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Chapter 1
Fores
One of our main onerns will be the movement of an objet fromone loation to another. In order to move an objet we'll applyeither a push or a pull. Sine we'll be talking quite a bit aboutthese pushes and pulls, we'll use the tehnial term from physis,and all eah push or pull a fore. Fores are what move thingsaround in the world. We owe this idea to Issa Newton who livedhundreds of years ago (from 1642 to 1727). He �gured out rules forhow fores make things move. There are three basi rules that thatmake up Newton's Laws of Motion . In very basi language, the�rst two laws an be stated as:1. Without fores, things remain in a onstant state of motion.If they are already moving, they keep moving in the samediretion and at the same speed. If they are not moving, theystay put.2. Fores ause things to hange their motion in the diretion ofthe fore. The more fore, the bigger the hange.Newton's laws of motion opened the door to understanding whyobjets fall to the ground and why the moon orbits the earth. Ofourse, you probably already know I am talking about the forealled gravity. In honor of �guring all this out, fores are often1



2 CHAPTER 1. FORCESmeasured in units named after the person who gave us this in-sight: Newtons (abbreviated as N ). However, sine we are justgetting started with fores and trying to build up our intuition,we'll start with a more familiar unit of fore: Pounds1 (abbrevi-ated as Lbs). Sine approximately 4.48 Newtons is equal to onepound, one Newton is approximately 0.223 pounds, about halfwaybetween a quarter and a �fth of a pound: 0.223 ≈ 1/4.48.You probably already have experiene measuring some quanti-ties like length, weight, and temperature that an be aptured bya single number. However, fores are a bit more ompliated thanthis. To see why, let's start with temperature. Imagine a room witha light-bulb on in the middle of it. Sine the light-bulb funtions asa soure of heat, we expet that temperatures near the light-bulbare higher than than temperatures farther away. If we had somesort of instant-read thermometer, we ould move it throughout theroom, reading the temperature at various points.

1You may wonder about kilograms at this point. However, there is a subtle distintionbetween kilograms (whih are units of mass), and pounds (whih are units of fore). Thisbeomes important with areful use of Newton's seond law, but in pratie we an onvertbetween pounds and kilograms with an appropriate assumption and onversion fator. See,for example, hapter 1 of my �Introdution to Roket Siene: How high will it go?�



3Now let's imagine a omparable senario for fores. Imagine asimilar room with a fan instead of a light-bulb. As the fan spins, itpushes the air around in the room. As the air presses on things, itexerts a fore. One way to measure the fore at a point in the roomwould be (without disturbing the air �ow) to release a small soapbubble at that point and observe its hange in motion at that point.We would have to measure two di�erent things about the motion.We would have to notie both how quikly it started to move andthe diretion in whih it started to move. One of the most versatileways to represent suh a measurement is with an arrow. The tail ofthe arrow is plaed at the measurement point, the tip of the arrowpoints in the diretion of the motion, and the length of the arrowindiates the how quikly the motion hanged at the measurementpoint. These arrows form a mathematial system of vetors, andthere is a whole algebra of adding, subtrating, (several ways of)multiplying, and even dividing vetors2.

2For a quik introdution to vetors see AppendixB.



4 CHAPTER 1. FORCESLet's try this out with a fore that we are all familiar with,the one generated by the very planet on whih we live, the earth'sgravity. We'll onsider the fore of gravity on three stones, oneweighing 5 pounds, one 2 pounds, and a 1 pound stone, eah beingpulled down toward the ground by di�erent amounts. You an feelthe di�erene if you try to lift them. The 5 pound stone is harderto lift: it is the heaviest. We an measure the fore on eah of thestones with a weight sale. If our sale is aurate and measuresweight in pounds, the 5 pound stone will weigh ... 5 pounds. Thefore of gravity will pull the stone down against the spring of thesale until the needle3 points to 5. The 2 pound stone will be pulleddown a little less than half of that, until the needle reads 2 pounds.The 1 pound stone will be pulled down against the spring exatlyhalf as muh as the 2 pound stone. The diretion of the fore ineah ase is straight down, toward the enter of the earth. To drawthe vetors for the fore on eah stone, we'll �rst draw the arrowdown from the 1 pound stone with a onvenient size for the arrow.Then the arrow for the 2 pound stone will be twie as long, andthe one from the 5 pound stone will be 5 times as long.

3If you are using a digital sale, the stone pushes down against the pressure sensor andthe eletronis either �ip through digits or wait until readings stabilize enough to read 5.0.



5We ould have used di�erent sized arrows, but it is a good ideawhenever possible to use the same sale for all the vetors in thesame diagram. For example, if the stones weighed 50, 20 and 10pounds instead of 5, 2, and 1 pounds, we ould use the same dia-gram, using the same arrows to represent the fores (exept di�er-ent labels) beause 20 pounds is just 2/5ths of 50 pounds, just as2 pounds is 2/5ths of 5 pounds. (See exerise 4.)Now, let's use this onept of fore to onsider4 a 20 pound stonesitting still on the ground. We know gravity is pulling down on thestone. If fores make things move, why is it just sitting there notmoving? You probably already know the rok doesn't move beauseit is on the ground, and the ground is �rm and doesn't budge muheven when you jump on it. Let's hange the way we are thinkingabout it.We an think of the ground pushing up on the stone, just likegravity is pulling it down. In fat, we think of the ground pushingup on the stone just exatly as muh as gravity pulling down on thestone, so that the two fores on the stone are in opposite diretionsbut have the same magnitude, aneling eah other out. We saythat the sum of the fores is zero. The pressure to move down isexatly aneled by an upward pressure in a way that is similar tothe way that a motion 3 feet to the north is aneled by a motion3 feet to the south. When we add the two motions together we endup right where we started.The ase of adding two vetors of the same length, but oppositediretions is one of the simplest examples of adding vetors. Let'stake a look in the following diagram:4An experiment we perform only in our minds is known as a thought experiment andperforming them is a proud tradition in physis, though using your mind to �gure thingsout only by thinking about them is not unique to physis and is a generally a good idea ;^)



6 CHAPTER 1. FORCES

More generally, when two vetors lie on the same line we simplyadd their signed magnitudes, where we pik one diretion of theline as positive and the other as negative. In our ase we an pikup as positive and down as negative so that we have -20 pounds offore from gravity and +20 pounds of fore being supplied by theground. When we add them together we get a resulting fore of 0pounds so that, by Newton's 1st law of motion, the rok stays put.(For more on adding vetors, see appendix B.)Now, let's ontinue to use this onept of fore to onsider whathappens when we lift the 20 pound stone up from the ground onto apini table. We bend down (with our legs, not our baks), extendour arms and put our hands underneath the stone on both sides sothat everything will stay balaned (so the stone doesn't fall as we liftit), grab the stone, and then we start to lift (with our legs). We startto apply fore with our leg musles. To be most e�etive (to use thefore of our leg musles most e�iently) we lift straight up, diretlyountering the fore of gravity that is pulling the stone straightdown. (We'll talk more about fore, the diretion of motion, and



7resulting work in the next hapter).If we lift very slowly, gently inreasing how muh strength weuse, at �rst nothing happens exept that we feel inreasing pressurein our hands and legs. Inreasing the use of our musles slowly, wefeel the stone move up and away from the ground just at the pointat whih we apply exatly as muh fore up as gravity is pullingthe stone down. As we put more musle into it, the stone moves upmore quikly. This is Newton's 2nd law of motion: as the resultingsum of fores beomes greater, the stone inreases its motion inthat diretion. As we gently derease our e�ort, the rok omes toa stop with us (instead of the ground) pulling up on the rok justenough (20 pounds worth) to ounter the pull of gravity.Before we move on to onsider the work done when we moveobjets around, try your hand at the following exerises to testyour understanding so far.



8 CHAPTER 1. FORCESExerises1. Make a diagram with two stones: a 6 pound stone sitting ona table, and 3 pound stone that is just beyond the edge ofthe table, at the height of the table, falling toward the ground(as if it has just been pushed o� the table). Draw arrows torepresent the fores on both the 3 pound, and the 6 poundstone.2. Think about the situation where we are starting to lift a 20pound stone up, o� of the ground. Suppose that we startlifting with 5 pounds of fore, and the rok is not yet mov-ing. With how muh fore must the ground still be pushingup against the rok to exatly ounterbalane the remaininggravitational fore? Make a diagram with the rok on theground and the 3 fore arrows that summarize this situation:one fore arrow for gravity, one for your 5 pound lift, and thethird for the push of the ground. Draw all of the arrows withtheir tail as a dot at the enter of the stone. Be sure to labelthe arrows as in the diagram bak on page 6.3. Suppose that you weight 100 pounds and that you an easilywalk up stairs and jump up and down.(a) At a minimum, how muh fore an you generate withboth legs?(b) Suppose that both legs are equally strong. At a minimum,how muh fore an one leg generate?() Suppose that you an jump up and down on only one leg.At a minimum, how muh fore an that one leg generate?4. Just as 2 piles of 5 beads is 2 × 5 = 5 + 5 = 10 beads, and 3groups of 4 is 3× 4 = 4+4+4 = 12, 2 times 1/5th is 2× 1
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Chapter 2
Work
We already have some intuition about work from what we feel whenwe move things (inluding ourselves) with our bodies. In this hap-ter we'll use this together with the idea of fores from the last hap-ter as a guide to help us generate a de�nition of work. This willhelp us gain a deeper understanding of work, inluding a surprisingresult about something that feels like work, but won't ount towardthe way we measure it.You probably know when you've done some work, say, lifting a20 pound stone from the ground up onto a table. You an feel inyour legs (if you are lifting properly) that you've done some work.You've applied a fore to the rok and moved it some distane, say2 feet. How muh fore was applied? 20 pounds of fore. Until youapply 20 pounds of lift to the stone, it stays put. One you balanethe downward fore of gravity exatly with an upward direted foreto anel it, the stone is free to move in an upward diretion withan appliation of additional fore in that diretion. In this hapter,we'll quantify (�gure out how to assign numbers to) the amount ofwork using mathematis you probably already know.

9



10 CHAPTER 2. WORK

We start with a ouple of simple observations. First, we'll wantto arrange things so that if we lift the stone twie as high, we'vedone twie as muh work. Similarly, if we lift the stone only halfas high, we've done only half as muh work. We an apture thisin a mathematial expressions by multiplying by the distane thatwe've lifted the stone so that we have, so far:Work = (some math expression) × DistaneMultipliation by distane aptures this aspet of work niely. Ifwe lift something three times as far, we've done three times asmuh work. We'll have more to say about diretion and distanelater, but before we take a loser look at that, let's inlude a seondobservation in our mathematial de�nition of work.



11

The seond observation we'll want to apture is that if the stoneweighs twie as muh (think of it as split into two equal parts), andwe lift it the same distane, we'll again have done twie as muhwork. Similarly, lifting a stone that weighs only half as muh re-quires only half as muh work. To �nish o� our mathematialde�nition of work, we have to ombine this with the downwardgravitational fore of the stone from the last hapter. In partiu-lar, to lift the stone, we exert a fore on the stone that ountersthe gravitational fore ausing the stone's weight. From our per-spetive, the work we've done in lifting the stone is the followingmultipliative ombination of not only how far we've moved thestone, but also the amount of fore we've had to apply to move it:Work = Force × DistaneWe'll all this the work equation and we'll use it to �nd nu-meri values for work. So, for example, in lifting a 20 pound stone2 feet we do 40 foot-pounds worth of work. Lifting a 10 poundstone 3 feet requires 30 foot-pounds of work.Here omes the surprising part of our de�nition. What if wepush on a really heavy boulder sitting on the ground, one thatweighs, say, 1000 pounds, without moving it? Sine the distane



12 CHAPTER 2. WORKmoved is zero, we haven't done any work even though it feels like it.However, if we think about it the right way, this makes sense: eventhough we may push really hard against the boulder, we haven'treally aomplished any work, even though we may use a signi�-ant amount of energy trying. This re�ets the fat that with ourquantitative de�nition of work we are measuring results external toourselves, in the world, not internally, how they feel inside.Now, let's ontinue with our example, thinking about lifting a20 pound stone 2 feet to set it on a table. In addition to lifting thestone, there is a fore and distane required to move it over to thetable top:

This brings up a number of interesting questions about the kindsof work done in lifting the stone and setting it on the table. The�rst distintion we make is between onserved and unreoverablework. Conserved work is work that is stored in some way thatallows reovering the work. For example, in lifting the stone fromthe ground to the table height, we have stored the work in the



13height of the stone. We ould get 40 foot-pounds bak out of thison�guration, by letting the stone fall through the 2 feet, bak tothe ground, perhaps lifting something else as it falls. The potentialwork that is stored in the height of the stone is alled potentialenergy.What about one we've lifted the stone, and are just holding itup without moving it? Just as with the 1000 pound boulder sittingon the ground: even though we are spending energy to keep thestone at the height (it feels like work), aording to our de�nition,sine the stone is not moving (distane is 0), we are doing no work.Next let's onsider the horizontal motion of the stone requiredto set it on the table top. First we onsider the horizontal motionthrough the air with no1 resistive fores. We use Newton's seondlaw of motion that tells us: without some fore to anel it, even thetiniest fore on the stone in the diretion of the table top will ausethe stone to start moving in that diretion. We'll leave �guring outexatly how muh fore and how fast the stone moves to a moreadvaned investigation of Newton's laws2. In this pamphlet, we'llsimplify the situation to say that, in priniple, we ould make thesideways fore, and thus the work, as small as we'd like. In thisase we an ignore ompletely this non-resistive horizontal motionof the stone. However, just so that you an know about the otherkinds of work and energy, we'll brie�y onsider the other ases.So, on the other hand, suppose that we pushed hard, inreasingthe stone's motion in the horizontal diretion so muh as to do asigni�ant amount of work. This work would also be stored, in thisase, in the horizontal motion of the stone. This is alled kinetienergy. We an reover the work by having the stone hit or pushsomething, performing some work for us, perhaps, storing it as1I should say �essentially no resistane� beause there is some resistane just to pushthe air out of the way. However, for our purposes, we will onsider this exeedingly smallamount of work insigni�ant. Can you think of a situation in whih pushing the air out ofthe way is so muh work that we must take it into aount?2For example, if you'd like to get involved with model roketry, hek out my pamphlet�Introdution to Roket Siene: How high will it go?�



14 CHAPTER 2. WORKpotential energy with some ingenious mehanism (suh a springand ath, or the lifting of some weight).The �nal kind of work is unreoverable. Unreoverable workis work that is lost and annot be reaptured. This sort of work anarise from sliding the stone along the table top. The on�gurationof the table top surfae with the stone pushing down on it auses thetwo surfaes to stik together. The amount of stikiness dependsstrongly on the nature of the surfaes and reates an opposing,resistive fore to our push alled frition.Consider an air-hokey table (providing a slippery ushion ofair) with the bottom of the stone being smooth, �at, and largeenough to keep the stone �oating. Then the tiniest push will startthe stone sliding. In this ase there is almost no fore opposing apush and we say that there is (pratially) no frition. Moving thestone 1 foot ould take an insigni�ant amount of fore (and thuswork), just like moving it through the air.On the other hand, if the table has a rough, wooden surfaethat reates a signi�ant amount of frition, we might have to pushwith 5 pounds of fore in order to slide the stone. In this ase,the fritional fore opposing a push is 5 pounds, and in sliding thestone 1 foot aross the table we would do 5 foot-pounds of work.What happens to the work? Is it stored somewhere? It is, atually.The rough surfaes rubbing together reate heat.You an try it with your hands. Try rubbing the palms ofyour hands against eah other, bak and forth, while pressing themstrongly together. The harder you press your palms together, themore frition you reate, and the more heat you generate. Further-more, the faster you rub your palms together, the more frition youreate, and the more heat you generate.In general we an't reover the work that reates heat. Thesubjet that deals with the study of heat, heat transfer and storage,and exatly how (and how muh) heat an be onverted into workis the area of siene known as thermodynamis that we'll leavefor some future investigation.



EXERCISES 15Exerises1. Fill in the empty ells in the following table:Fore Distane Work12 pounds 36 foot-pounds4 feet 36 foot-pounds5 pounds 3 feet6 Newtons 12 Newton-meters7 Newtons 3 meters2. Suppose we have two ways to lift a 12 pound stone 2 feet. Howmuh fore must be applied to lift the stone diretly? Howmuh work is done? An easier way requires only 6 pounds offore. If the amount of work is the same, over what distanemust the 6 pounds of fore be applied?3. Imagine being at the top of a steep hill on a biyle.(a) Coasting down the hill on the biyle onverts what sortof energy into what sort of energy?(b) When you apply the brakes, what sort of fore are youounting on?() If the brakes are working well, what sort of energy is re-ated?4. For this exerise, let's suppose that all 100 pounds of yourweight is loated at the enter of your body. Suppose thatwhen you rouh down to jump as high as you an, the enterof your body is at a height of 1 and 1/2 feet, and that at fullextension your enter is at a height of 3 and 1/2 feet. Furthersuppose that during the jump your legs an apply a fore of200 pounds to lift your body through the jump when you aretrying to jump as high as possible.(a) What is the displaement of the enter of your body forthe portion of the jump during whih your legs apply thefore?



16 CHAPTER 2. WORK(b) If you are trying to jump as high as possible (using the fullfore that your legs an supply), what is the work doneby your legs for this portion of the jump?() What is the minimum work required to lift your body forthis portion of the jump?(d) What is the di�erene between the the minimum workrequired and the work done by your legs when trying tojump as high as possible?(e) At the point your feet leave the ground, what sort of en-ergy stores the extra work done by your legs identi�ed inpart (4d). Will this energy ontinue to do work? Does itin�uene the height of the jump?(f) To what height do you expet the enter of your body totravel by applying 200 pounds of fore with your legs?5. In this exerise3, suppose that all 100 pounds of your weight isloated at the enter of your body. Suppose that your joggingstride is 4 feet, and that with eah jogging stride you moveyour enter of weight up only 1/2 foot. Assume that youjog e�iently by not jumping during the stride, so that yourfoot stays in ontat with the ground for the omplete upwardmotion of your body, and any time spent ruising through theair is in the forward and downward diretion. (In other words,assume that most signi�ant part of the work of the stride isspent lifting your body the 1/2 foot.)(a) How muh work is done with eah jogging stride?(b) Estimate the work done in running one mile (5280 feet).() Without hanging your weight, name two ways to inreaseyour jogging e�ieny (deease the work required to joga mile).
3Thanks to Asher Klathko for the ideas behind this exerise.



Chapter 3
The Lever and Fulrum
In this hapter we take a look at what must surely be one of thesimplest and �rst mahines ever used by humans. We probably�rst used these mahines before we started writing stories to pre-serve knowledge aross generations. To make one of these simplemahines, all you need is a strong stik to use as a lever, a rok fora fulrum, and then you are ready to use it to tumble a boulder.Let's take a look at the basi on�guration and name the essentialparts1:

There are two fundamental parts of this simple mahine: thelever, and the fulrum. An ideal lever is straight and strong. This1Thanks to Jane Kenney-Norberg for this diagram.17



18 CHAPTER 3. THE LEVER AND FULCRUMallows the full transfer of fore from the point of e�ort to the pointof load. An ideal fulrum omes to a point and is immovable (how-ever, in pratie a sharp point is easier to break and an damagethe lever more easily than a rounded point). The lever is omposedof two parts, the load arm and the e�ort arm. The load arm isthe part of the lever that extends from the fulrum to the pointof load (where the load is loated on the lever). The load is theobjet to be moved or pushed against. The e�ort arm is the partof the lever that extends from the fulrum to the point of e�ort(the position where fore or e�ort is applied to move the load).To see how a lever and fulrum make lifting an objet easier,let's take a look at a spei� ase: lifting a 24 pound rok, 1 foot,using a 12 foot lever. Let's plae the fulrum so that it divides thelever into a 4 foot load arm, and 8 foot e�ort arm:

Let's label the points of the load triangle ABF and the e�orttriangle CDF. I've plaed small squares at the orners B and Dto indiate those orner angles are the same as that of a square(they're alled right angles) indiating that the work distaneand the e�ort distane are vertial. More to the point, the workdistane is along the line of gravitational fore (weight) that therok feels and so, as we disussed in hapter 2, we an use the workequation to determine the amount of work in lifting the rok as:Work = Fore × Distane
= 24 pounds × 1 foot
= 24 foot-pounds



19To further our understanding, we'll ignore any frition at thefulrum or bending of the lever, and make the assumption that thework done in lifting the rok is the same whether we lift it diretly,or use the lever and fulrum. This is what is known in physis asa onservation priniple, a rule that says that some quantityremains onstant aross some sort of hange. In our ase, work isonstant aross the hange of how we perform the work. We ansay that work is onserved or talk about the onservation of workin simple mahines. We an use this to better understand the e�ortside of the situation, but �rst we'll need a little geometry.We need to observe that triangle ABF has the same shape astriangle CDF. In other words, the orresponding angles of the tri-angles are the same2: the angle at A is the same as the one at C,the angle at B is the same as the one at D, and the angles at F arethe same. (For more on this see exerises 1 and 2.) This meansthat the e�ort triangle and its parts are some multiple of the loadtriangle and its parts3. This allows us to work out the sale fator,sine we know the lengths of the load and e�ort arm are 4 feet and8 feet respetively:
Load_Arm × Sale_Fator = E�ort_Arm

4 feet× Sale_Fator = 8 feetWe an see that the sale fator is 2 in two ways: either by�guring out what we have to multiply 4 feet by in order to get8 feet, or by dividing both sides of the equation by 4 feet (seeAppendix A for more on working with equations). Either way,2When two geometri objets have orresponding angles that are the same, we say theobjets are similar. When the objets have the same angles and size, we say they areongruent. Rather than saying two line segments, angles, or triangles are ongruent,Eulid would have said �equal.�3Another way to say this is that the two triangles are in proportion: dividing orrespond-ing lengths gives the same ratio. That ratio is the sale fator, or multiple, mentioned inthe text. This is a ombination of Eulid Book I propositions 28 and 29 about angles ofparallel lines, and Book VI proposition 2 about utting a triangle with a line parallel to aside.



20 CHAPTER 3. THE LEVER AND FULCRUMwe know that the e�ort triangle and its parts are 2 times biggerthan the load triangle and its parts. This means that the e�ortdistane is 2 times 1 foot, or 2 feet. Let's take a look at how thison�guration makes it twie as easy to lift the rok.To lift the rok up, we push straight down on the e�ort endof the lever so that the lever rotates about the fulrum. We pushdown through the e�ort distane of 2 feet. We now use the workonservation priniple to reason that the amount of work in liftingthe rok with the lever is the same as lifting it diretly. Sine weknow how muh work it is to lift the rok diretly, 24 foot-pounds,we an now use the work equation to �gure out how muh e�ortwe have to apply to the e�ort arm to lift the rok:Work = Fore × Distane
24 foot-pounds = Fore × 2 feetThis tells us that we only have to use 12 pounds of fore to lift a24 pound rok! It is twie as easy to lift the rok with the leverand fulrum! A lever with an e�ort arm twie as long as the loadarm has magni�ed our strength by a fator of 2. However, notie(diagram page 18) that in order to lift the Load (24 pounds) theWork_Distane (1 foot), we had to apply the E�ort (12 pounds offore) through the E�ort_Distane (2 feet) so the amount of workremains the same. This is the assumption we started with. Let'sbe even more expliit with the following lever-work equation:Load ×Work_Distane = E�ort × E�ort_DistaneWhat we are really ounting on to make sense of all of this isthat the work on the left side of the equation is the same as the workon the right side. Even though we have good reason to believe thework is the same, how an we hek that it really works this way?Exerise 3 may give you an idea for some experiments you try totest this equation. However, let me just say that the more aurateyour measurements of distanes and weights, the more importantthe weight of the lever itself beomes.



21We need to look at one more aspet of the e�ort fore before wemove on. You may want to review the disussion of the horizontalmotion on page 13. We found there that we ould ignore the foreto move the stone horizontally, that the work of moving stone tothe table top was due almost entirely to the fore of lifting the stonestraight up.Similarly, with our lever and fulrum, only the fore in the dire-tion of the work distane ontributes. Beause of the geometry ofthe lever and fulrum, this translates diretly into the fore we ap-ply through the e�ort distane. Only the part of the fore we applyto the lever straight down ontributes signi�antly to the work oflifting the 24 pound rok. This is why we use the vertial distanesrather than the urved ar lengths in the lever-work equation: thevertial distanes lie ompletely in the diretion of the fore neededto lift the rok .Lever and fulrum mahines are so useful and have been appliedin so many ways, that their on�gurations have been ategorizedinto lasses4. The diagrams on pages 17 and 18 show what is knownas a lass I lever5. The e�ort arm and load arm oupy di�erentportions of the lever on opposite sides of the fulrum. In lassII levers, the load and e�ort arms overlap, oupying a ommonportion of the lever, with the point of load between the fulrumand point of e�ort:

4http://en.wikipedia.org/wiki/Lever5To be used as a lever and fulrum simple mahine, a lever is always paired with afulrum. However, our human nature to ollapse bloks of information into more ompatabstrations often auses us to abbreviate the phrase �lever and fulrum� to the shorter,single word �lever�.



22 CHAPTER 3. THE LEVER AND FULCRUMClass III levers have the point of e�ort positioned betweenthe fulrum and the point of load. The most familiar example of alass III lever is the elbow and biep of the human arm:

In addition to these lever lassi�ations, I'll give you one �nalon�guration that utilizes a pair of levers, onneted with an axleor freely rotating onnetion that funtions as a fulrum for bothlevers. These simple mahines are so handy, that not only have youprobably already used them, but you probably don't even thinktwie about how they work:

One thing all these di�erent lever on�gurations have in om-mon is that the same priniples that we used to understand thelass I levers apply: the similarity of the load and e�ort triangles,and the onservation of work. Exerises 5 and 6 give you a haneto work with these other on�gurations.



23We an even use levers in a purely abstrat way as desribedin appendix A to help us better understand onepts, or even toalulate the area of urved geometri shapes as Arhimedes didthousands of years ago6.Finally, there is a speialized appliation that is so profoundthat it is onsidered its own, distint simple mahine. We'll takea look at this more losely in the next hapter, but �rst, try thefollowing exerises to test and improve your understanding of leverand fulrum systems.

6See Netz and Noel's �The Arhimedes Codex: How a Medieval Prayer Book is Revealingthe True Genius of Antiquity's Greatest Sientist� for this fasinating story. One of the re-overed writings desribed is the method wherein Arhimedes uses the leverage priniple (seethe leverage equation on page 51) to alulate the area of a parabola setion, foreshadowingour modern oneption of the Calulus.



24 CHAPTER 3. THE LEVER AND FULCRUMExerisesThe �rst two exerises ask you to write and work with some equa-tions. If this sort of thing is new to you or you feel like you wantto know more about equations before trying this, see Appendix A�rst.1. Eulid's De�nition 10 in Book I of a right angle tells us thatthe angle of any line is omposed of two equal angles (likethe orner of a page) alled right angles and Postulate 4 ofBook I tells us that all right angles are equal. If we assignnumeri measures to angles so that a right angle measures 90degrees (90◦), this tells us that the angle of a straight line is180 degrees (180◦). In the diagram of the lever and fulrumdepited on page 18, let ∡
◦AFB denote the measure of angleAFB, ∡◦BFC denote the measure of angle BFC, and ∡◦CFDdenote the measure of angle CFD.(a) Write an equation for the sum of angle measures alongline AFC in terms of ∡◦AFB, ∡◦BFC, and ∡◦AFC.(b) Now, write an equation for the sum of angle measuresalong line BFD in terms of∡◦BFC, ∡◦CFD, and∡

◦BFD.() Finally, use these two equations to show that ∡
◦AFB =

∡◦CFD. [In essene, this is Eulid's Proposition 15 ofBook I. These angles are ommonly alled vertial an-gles. Angles BFC and AFD are also vertial angles.℄(d) Rereate the sketh of the load and e�ort triangles onwhite paper and use a blue highlighter to olor in the an-gles AFB and FBC (angles of the equation of part (1a)).Use a yellow highlighter to olor in the angles BFC andCFD (angles of the equation of part (1b)). Notie thatpart (1) is about showing that the portion of the skethwith blue pigment is equal to the portion with yellow pig-ment, by subtrating out the ommon in green.



EXERCISES 252. Eulid's Proposition 32 of Book I argues that the sum of the in-ternal angles of any triangle add up to two right angles (180◦).In the diagram of the lever and fulrum depited on page 18,let ∡◦AFB, ∡◦ABF , and ∡◦BAF denote the measures ofthe load triangle angles, and ∡◦CFD, ∡◦CDF , and ∡◦DCFdenote the measures of the e�ort triangle angles.(a) Write an equation for the sum of the load triangle angles.(b) Write an equation for the sum of the e�ort triangle angles.() Now ombine the equations in parts (2a) and (2b) intoone equation by eliminating the 180◦.(d) Use result 1 above, substitute 90◦ for∡
◦ABF and∡

◦CDE,and show that ∡◦BAF = ∡◦DCF .(e) Rereate the sketh of the load and e�ort triangles onwhite paper. Use a blue highlighter to olor the B andD orners of the load and e�ort triangles. Use a yellowhighlighter to olor the F orners of the load and e�orttriangles. Part (2) is about showing the sum of left blue,yellow, and white angles is equal to the sum of right blue,yellow and white angles. Part (2d) is about showing thatsine the blue angles are equal, and the yellow angles areequal, then the white angles must also be equal.3. Fill in the empty ells in the following table to satisfy thelever-work equation:Load ×Work_Distane = E�ort × E�ort_DistaneLoad Load Work E�ort E�ort E�ortArm Distane Arm Distane36 Lbs 12 ft 3 ft 12 Lbs20 Lbs 4 ft 8 ft 2 ft6 Lbs 3 ft 1 ft 9 ft0.5 in 3 in 1 in 6 Lbs2/3 in 3 in 1 in 6 Lbs3 m 5 m 5 m 6 N5 N 2 m 1 m 20 N



26 CHAPTER 3. THE LEVER AND FULCRUM4. Refer to our lever and fulrum depited on page 18. Assumethat the lever material has very little weight ompared to the24 pound rok.(a) What ould you plae at the point of e�ort of the leverto hek that the amount of fore required to lift the 24pound rok is ut in half?(b) What physial ondition (position of the lever) signals theveri�ation of balaned fores in part (a)?5. Suppose that you have to move a ton (2000 pounds) of dirtwith a wheelbarrow. Furthermore, suppose that you an lift(with your legs), hold up (with hands and arms), and moveabout 100 pounds above and beyond your body weight. Fi-nally, suppose that the enter of the barrow (buket) is 2 feetfrom the enter of the wheel, and that you grasp the handlesomfortably about 4 feet from the enter of the wheel.(a) About muh dirt an you arry in one wheelbarrow load?(b) About how many trips will you have to make to move thedirt from the street (where it was delivered by the dumptruk) to the garden.?6. Suppose that you squeeze the handles of a typial sissors(shown below) together with 6 pounds of fore applied at pointE. What is the fore applied at point A? At point B? At pointC? [Hint: use exerise 3.℄



Chapter 4The Wheel and Axle
In this hapter we fous our attention on simple mahines that bringthe in�nitely symmetrial shape of the irle to our aid in movingobjets. To start, onsider how a irular shape an be used toredue the frition of moving objets muh as anient Egyptiansare thought to have used logs to move the bloks of a pyramid:

Before we take a loser look, let's introdue some terminology:

27



28 CHAPTER 4. THE WHEEL AND AXLENow onsider what happens as we push the blok to the right:

As we push the blok, the frition between the top of the log andthe blok ause a resistive fore (to the left) on the blok. Thetop of the log feels this as a fore (to the right) applied to the topof the log. Similarly, the frition between the log and the groundause a resistive fore (to the left) at the bottom of the log as thelog is pushed to the right from the frition at the top. These foreson the top and bottom of the log in opposing diretions ause itto rotate about its enter, rolling along both the ground and theblok.We an redue energy lost in frition by making the ylindersand their alignment perfet as well as making the blok and groundmore �at, smooth and hard. Suppose we redue the frition so muhthat we an ignore it, and yet we still do a large amount of workin moving the blok horizontally. Can you reall from hapter 2where the energy is stored? In this ase, the work is onverted intothe kineti energy of the motion, not only of the blok, but also therotation of the logs.However, even if we an keep everything properly aligned, onesubstantial problem with this on�guration is that the ylinders willroll out from underneath the blok: eah half rotation auses theylinder to move bak on the blok by one half of its irumferene.In order to keep the irular shape (known as a wheel) in plaeand orretly oriented to help move objets, we attah eah wheelto a shaft (known as an axle) that allows the wheel to be �xed inplae and yet rotate as needed. This reintrodues frition with therotation of the wheel, but keeps the wheels aligned, in plae, and



29eliminates the need for the moving objet to be �at.We'll soon look more losely at frition, but, �rst, let's take aloser look at a simpler on�guration of a wheel and axle ignoringfrition for the moment.

As we turn the wheel (we ould use a belt or gear teeth aroundthe irumferene of the wheel, or just grab there with our handsto turn it), the line winds around the axle and lifts the weight. Thequestion we'll dig into further is: How does the wheel and axle helpus lift the weight? To answer this, we'll fous our attention on aslie of the on�guration as follows:

Hopefully, you'll be able to reognize this as our lever diagramfrom page 18. In fat, a wheel and axle form a ontinuously rotatinglever! In this on�guration, the enter of the axle (and wheel) is



30 CHAPTER 4. THE WHEEL AND AXLEthe fulrum, eah radius of the axle is a load arm, and eah radiusof the wheel is an e�ort arm.From our earlier analysis of levers, we know that if the radiusof the wheel is four times the radius of the axle, we will only haveto use one quarter of the fore required to lift the weight, but mustapply that fore through four times the distane (the irumfereneof the wheel as opposed to the irumferene of the axle). In asimilar way, if we an apply four times the fore required to turnthe axle, then the length of travel of a point on the outer edge ofthe wheel (around the irumferene) will be four times as far asthe motion of a point on the surfae of the axle. It's no wonderthat vehiles with wheels an move so fast!Now, let's take a loser look at pushing a art or wagon and seewhat happens with the axles attahed to the art:

As we push the art, it applies the fore of our push to the axlesthrough the attahment points. The frition between the wheelsand the ground auses a resistive fore to be applied to the wheelsat the point where they touh the ground. The two opposing fores,one on the axle pushing forward, the other on the outer edge of thewheel pushing bak ause the wheel to rotate.The main di�erene between rotating logs under a blok, andwheels and axles on a art, is that the axles are held in plae by abraket, a bearing1, or some other material that will touh the axle1A bearing is an objet whose purpose is to provide a surfae to take on (withoutyielding) the fore of ontat of some other objet.



31as it rotates. This will introdue the resistive fore of frition in adiretion that opposes motion of the axle2:

This onentrates the frition to the points of attahment forthe axles. We an redue the frition at these isolated plaes withvarious tehniques that inlude making the surfaes smooth, hard,and slippery. Here is a devie that, in addition, utilizes the freelyrolling log idea, �xing balls around the axle with a speial braketthat allows the balls to rotate almost freely:

2Rather than draw a bunh of little arrows all along the irumferene of the axle, Ijust sort of joined them together into a bigger urved arrow. Most of the ontat fore andfrition will our on the top half of the axle.



32 CHAPTER 4. THE WHEEL AND AXLEHowever, even without any speial devies or attention to re-duing frition (other than making sure the hole is big enough tolet the axle to rotate freely), the rotating lever on�guration makesthe wheel and axle work. The multipliation of fore due to a largewheel radius ompared to a small axle radius an easily overwhelma small fritional fore resisting the rotation.Before we end the hapter, let me mention that the ontinu-ous irular motion of the wheel and axle is so useful that it hasspawned three di�erent lasses of simple mahines. The �rst arerope and pulley systems that we'll take a loser look at in the nexthapter. The seond are belt and pulley systems that link tworotating pulleys together using a �exible onnetor and frition.The third lass loks rotating wheels (alled gears) together withinterloking teeth.Now, here are some exerises for you to hek your understand-ing of the wheel and axle.



EXERCISES 33Exerises1. Consider the blok and log diagrams on pages 27 and 28. Howmany irumferenes of a wheel does a blok move when thewheel rotates two omplete revolutions?2. For this exerise3 you need a ouple of di�erent sized wheelsand some string.(a) Loop the string one around the irumferene of the �rstwheel so that you have a length that represents the ir-umferene of the wheel. Measure the irumferene ofthe wheel by measuring the string.(b) Measure the diameter of the wheel (perhaps as its heightwhen plaed in a rolling position on a table).() Find the ratio between the irumferene and the diame-ter of the wheel:(d) Repeat parts (a), (b), and () for the seond wheel. Arethe values similar?(e) What do you think would be the ase for a third wheelwith a di�erent diameter?3. Consider frition brakes for a biyle wheel having a 32 inhdiameter rim and a onentri (having the same enter) 8inh diameter dis.(a) All other things being equal, how muh more e�etive arebrakes on the rim of the wheel than brakes on the 8 inhdiameter disk?(b) All other things being equal, how muh more frition sur-fae area must the dis brakes have to be as e�etive asthe brakes on the rim?() What is another way of making the dis brakes more ef-fetive without hanging either their distane from theenter, or their frition surfae area?3Thanks to Leo Rie for this exerise.



34 CHAPTER 4. THE WHEEL AND AXLE4. Suppose a water wheel, through the ombination of kinetienergy of water falling into and the resulting weight of water inthe bukets, an supply 50 pounds of fore at a radius of 6 feet.Suppose further that the frition of the wheel is negligible.(a) Torque is a quantity, similar to work, that we de�ne asthe produt of two terms: 1) the radius of the irle of ro-tation, and 2) the fore at a point on the irle of rotation,in the diretion of the irumferene of the irle:Torque = Force × RadiusWhat is the torque supplied by the water wheel in foot-pounds?(b) Suppose the water wheel is used to lift weights at vari-ous speeds by onneting the axle to di�erent sized axleswith ropes to lift them. Fill in the missing values in thefollowing table for the maximum weight apable of beinglifted by the water wheel using axles of the various spei-�ed sizes.Max Load Radius Torque60 pounds300 pounds 3 feet1 foot6 inhes3 inhes12 feet



Chapter 5
Rope and Pulley Systems
In this hapter we'll take a look at a simple mahine that is thought1to be invented by Arhimedes of Syrause about 250 BC and isstill in use, espeially on ships with sails, even today. This simplemahine is onstruted out of a rope (or some similar strong, thin,�exible, but non-strethable substane) and speial wheels alledpulleys that have grooves for the rope around their irumferene.The groves on a pulley keep the rope from slipping o�. One possibleonstrution might look something like this:

1http://en.wikipedia.org/wiki/Blok_and_takle35



36 CHAPTER 5. ROPE AND PULLEY SYSTEMSNotie the two groups of pulleys: one group attahed to anoverhead immovable objet (suh as an arh, eiling rafter, or shipspar) and another group below, fastened together with a beam thatis bearing some load to be lifted. The basi idea is to pull the ropein order to lift the objet attahed to the bottom set of pulleys.We arrange the system so that we pull down on the rope to lift theload, using our full body weight of fore.Before we an �nd out how muh easier this rope and pulleysystem makes lifting things, we need to address a pratial issuethat hampers the proper operation of the onstrution shown above.What we would like to have happen when we pull on the rope,is for the beam onneting the pulleys to move up, staying parallelto the ground. Can you guess what will really happen? Wheredoes the rope �rst start to pull on the lower beam? Can you �ndthe pulley that will �rst feel the lift from the rope? It is the oneon the left. It will start to move up before the one on the right ina way that will minimize the lifting of the load:

Making the devie as ompat as possible eliminates this e�etas well as making it easier to transport, attah, and �t into plae.The pulleys are ollapsed onto two axles, one at the top, and one



37at the bottom, yielding the arrangement given to us by Arhimedesthat we all a blok and takle shown below (the left view showspulley edges, the right view shows pulley irumferenes):

The blok and takle allows uniform lifting of the axle and uni-form shortening of the rope segments onneting the upper pulleysto the lower pulleys. In order to more easily visualize and under-stand how this simple mahine helps us work, we'll use the �rstdiagram where the pulleys are separated, even though in pratiethey'll be on�gured into the blok and takle arrangement.Let's start by onsidering lifting a 24-pound objet up one foot.We reall from hapter 2 the work equation:Work = Force × DistaneIf we plug in 24 pounds for Force and 1 foot for Distane we endup with 24 foot-pounds for the amount ofWork. Now, let's see howthis works with a pair of pulleys above and a pair below:



38 CHAPTER 5. ROPE AND PULLEY SYSTEMS

In keeping with the lever terminology, we'll all the line that wepull the e�ort line, and the lines that run from pulley to pulley (orpulley to �xed attahment) load lines. In the ase shown above, wehave four load lines. Using this on�guration to lift the 24 poundweight up 1 foot, we an see that all of the load lines must ontratby approximately2 one foot. This means that we must pull thee�ort line approximately 4 feet.We now assume that the pulley and axle have minimal fritionand invoke our work onservation priniple to reason that the workof pulling the e�ort line is the same as the work of lifting the load.Lifting the 24 pound weight by 1 foot (ignoring the little fritionin eah pulley) is 24 foot-pounds. We also know the distane wemust pull the e�ort line is 4 feet. Plugging these values into thework equation
24 foot-pounds = Fore × 4 feetwe an see that the fore required is only 6 pounds. In other words,the rope and pulley system redued the fore required to lift the2The more the upper pulleys are diretly over the lower ones, as in a blok and takle,the loser to one foot the rope segments must move.



39objet by a fator of 4. Furthermore, we an see that regardless ofthe objet weight, the same redution fator of 4 will apply, beausethere are exatly 4 load lines over whih the e�ort is evenly spread,and this inreases the distane over whih the redued fore mustbe applied.As with the other simple mahines, we an see that when thework remains the same, the fore redution and distane magni�-ation are linked as a onsequene of the work equation:Work = Force × DistaneWhen we keep Work onstant and redue Force by some fator,then Distane must inrease by that same fator to keep Workonstant.This all assumes that we have ideal pulleys, that there is mini-mal frition between eah pulley and its axle. Reall our disussionof frition for the wheel and axle in hapter 4. However, how wouldwe have to modify the work equation if the frition beomes signif-iant? For more on this try exerise 8.Before you dig into the exerises, let me point out the advantageof using even just a single overhead pulley. Even though there isonly one load line and one e�ort line, with this on�guration youan more easily lift your body weight weight worth of load. Eithergrip the line and pull down with all your body weight, or tie a loopin the e�ort line a foot or two o� the ground and stand in it. Foran added twist, see exerise 7.



40 CHAPTER 5. ROPE AND PULLEY SYSTEMSExerises1. Suppose you weigh 80 pounds, and you have a 4-load-line blokand takle attahed to a sturdy beam in your garage. Whatis the most you an lift using only your own weight?2. Draw a rope and pulley system with 2 load lines.3. Draw a system with the most load lines using 3 pulleys.4. Draw a pulley and rope system with 5 load lines.5. Assuming downward e�ort, does a rope and pulley system withan even number of load lines anhor above or below?6. How many pulleys are neessary for a system with n load lines?7. Suppose you weigh 70 pounds, that you have a 4-load-lineblok and takle attahed to a sturdy beam in your garage.You need to lift a 320 pound objet. How muh weight do youhave to put in your bakpak to get the job done?8. Suppose you don't have any pulleys, but do have: a rope, theobjet you want to lift has a smooth, sturdy, axle-like handle,and there is a smooth, sturdy, axle-like bar overhead you anuse to lift the objet. Denote the weight of the objet as Fand the distane you need to lift it as d.(a) If you rig a 4-load-line blok and takle (without the pul-leys, all eah plae you'd want a pulley a frition-point),how muh weight will eah frition-point feel?(b) Assume that the frition between the rope and axle isproportional to (say one tenth of) the weight felt. Howmuh work is onsumed by the frition at the frition-point losest to the rope anhor? The seond losest?The third losest? The remaining one?() What is the total work onsumed by all the frition points?(d) Give an expression using F , d, and the frition oe�ient
c = 1/10 for the total work required to lift the objet.



Appendix ASimple Equations
Just as onise notes fous our attention and ollapse a ompliatedsubjet into a omprehensible group of onepts, so do equationshelp us understand and reason about relationships. Think abouthow the work equation helps us understand the relationship be-tween work, fore, and distane. Embedded in the equation is notonly our de�nition of work, but also the restrition: that to keepwork onstant, a redution in fore is neessarily aompanied byan inrease in distane over whih it is applied.In this appendix we'll follow in Arhimedes' footsteps and usethe level in a purely abstrat way to further our understanding ofequations. Hopefully, this will help visualize what equations meanand how to work with them. Spei�ally, we'll explore how a trueequation is like a speial kind of lever, a beam balane that isperfetly level (horizontal):
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42 APPENDIX A. SIMPLE EQUATIONSA beam balane has the left and right arm of the same lengthso that weights on eah side are equal when the beam is horizontalor level. The horizontal or level position of the balane orrespondsto truth of the equation. If the beam is horizontal, the weights areequal and the equation is true. The weight on the left hand sideof the balane orresponds to the numeri value on the left handside (LHS) of the equation, the weight on the right orresponds tothe numeri value on the right hand side (RHS) of the equation.In the ase shown above, the boxes on the left hand side representthe variable, or unknown quantity, x. The beads on the right handside represent the integer 6.Let's explore this a bit further. We ould, for instane, add onebox to eah side and maintain the balane. This would orrespondto the equation: 3x = x+6. (In this appendix, I'll often write prod-uts without using an expliit multipliation sign, or sometimes asa dot, to avoid onfusion with the variable x.)

In priniple we ould add any number of boxes, say n of them,to eah side and maintain the balane: 2x + nx = nx + 6. Thisorresponds to a priniple that goes bak more than 2000 years toEulid. He aptured it as Common Notion 2 in Book I of TheElements that an be translated as1: �If equals be added to equals,the wholes are equal.�1See Book I Common Notion 2 of Heath's volume 1 of �Eulid: The Thirteen Booksof the Elements.� The ommon notions are general priniples used freely throughout theproofs (sequenes of justi�ations for the truth) of the propositions.



43In a similar way, we ould add equal numbers (beads), say 3, toeah side to get: 2x + 3 = 9:

Or subtrat equal amounts from eah side to maintain the bal-ane. Am I talking about the equation (x's and numbers), thebeam balane (boxes and beads), or both? Does it matter? Per-haps our analogy breaks down when we try to take away more thanis present on the balane to end up with negative weight, but thepriniple still holds for an equation.Alternatively, when starting from a balaned state, we shouldbe able to double both the LHS and RHS and maintain the balane.This orresponds to the equation: 2(2x) = 2(6), whih we an writeas: 4x = 12:

However, in priniple, we ould triple, quadruple, or, more gen-erally, multiply by n both the LHS and RHS and maintain thebalane: n(2x) = n6.



44 APPENDIX A. SIMPLE EQUATIONSSimilarly, we an divide eah side in half, leaving one half oneah side and maintain the balane. This orresponds to the equa-tion: x = 3. Hopefully, you an begin to see how useful theseoperations are for solving simple equations.One again our analogy auses some di�ulty when generalizingdivision of both sides by any number, where in the ase of thebalane we think in terms of whole objets, but again it remainstrue for equations: 2x/n = 6/n as long as n is not zero.We an even ombine the multipliation (by n) and division (bynon-zero d) into multipliation on both sides by one number, thefration n/d:
n

d
(2x) =

n

d
6Let's summarize all these operations that maintain the truth ofan equation with the following symboli rules by saying that if wehave some equation:

LHS = RHS for example 2x = 6then for any number c, whether it is positive, negative, integer,frational, or deimal (inluding deimal numbers that annot bewritten as frations), the following are also true:
LHS + c = RHS + c for example 2x + 4 = 6 + 4

LHS − c = RHS − c 2x − 6 = 6 − 6

c(LHS) = c(RHS) 5(2x) = 5 · 6and for non-zero c:
LHS

c
=

RHS

c
for example

2x

2
=

6

2



EXAMPLE 1: A WORD PROBLEM 45Example 1: A Word ProblemOur �rst example goes like this: �Kate is two years older than hersister Madeline and three years older than her brother Doug. Alltogether, their ages add up to 49. How old is Kate?�To begin, we need to write this down symbolially. We'll hooseour variable x to be Kate's age in years. Then Madeline's age will bex-2 and Doug's age will be x-3. We an write down the informationgiven to us in the following equation:
x + (x − 2) + (x − 3) = 49We'll start by olleting the variables on the LHS, as well as thenumbers. We have three x's altogether, and we are taking away�ve altogether, so we have:

3x − 5 = 49Our general strategy will be to perform operations on the equa-tion until we end up with x all by itself on the LHS giving us theanswer. Our next step will be to add 5 to eah side of the equation,and then we'll dived both sides by 3 to get the answer:
3x − 5 = 49

3x = 54

x = 18Finally, we'll hek our answer by substituting the values bak intoour original equation:
18 + 16 + 15 =? = 49



46 APPENDIX A. SIMPLE EQUATIONSExample 2: Area of TrianglesLet's examine the area of triangles using what we know about ret-angles. We'll start by realling that the area of an 8 by 4 retangleis 8 · 4 = 32 squares (units of area):

In a similar way, any retangle with sides having whole-numberlengths n and m will have the area: nm (remember, this means ntimes m). We an extend this same area rule to retangles withsides of any positive lengths b and h using the same expression: bh.Let's write this as the equation: area� = bh.

Now if we an agree that drawing a diagonal aross a retanglesplits it into two equal 2 triangles, then we we'll have the area of theretangle being twie the area of the triangle:2In modern language, we say they are ongruent. Eulid Book I proposition 4 tells usthese triangles are equal sine: 1) line segment AB is ongruent to CD, 2) BC is ongruent toDA, and 3) angle ABC is the same square angle as CDA. See Heath's �Eulid: The ThirteenBooks of The Elements.� This is ommonly known as the SAS rule, and even thoughEulid inludes it as a proposition with an argument for its truth, it really is a postulate oraxiom, something that we simply aept as true.



EXAMPLE 2: AREA OF TRIANGLES 47area� = 2area△However, we also know that the area of the retangle is: bh.We now use a priniple whose truth is beyond question in bothalgebra and geometry, Eulid's3 Common Notion 1: Things whihare equal to the same thing are also equal to one another . Thismeans that we an substitute the produt bh in plae of the areaof the retangle area�:
bh = 2area△We an now divide both sides of this equation by 2 (that's thesame as multiplying by 1/2) to �nd the area of a triangle with asquare orner at the base, base length b, and height h at the squareorner as: area△ =

1

2
bhSquare orners are speial in geometry. Eulid4 alled themright angles, de�ned so that adding two of them makes a straightline, and assumed eah right angle is equal to any other. We alla triangle that has a right angle as a orner a right triangle, andjust as a right angle is speial, so is a right triangle.So, how do we �nd the area of a triangle that doesn't have asquare orner? Just as we used retangular area to �gure out thearea of a right triangle, we'll use what we know (area of a righttriangle) to �gure out what we don't (area of a triangle without asquare orner at the base). Let's start with the ase of a trianglewith the peak over the base. We'll just draw a vertial line downfrom the peak to the base to end up with two right triangles:3See Book I Common Notion 1 of Heath's volume 1 of �Eulid: The Thirteen Books ofThe Elements.�4See Book I De�nition 10 and Postulate 4 of Heath's volume 1 of �Eulid: The ThirteenBooks of The Elements.�
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First we'll express the area of the original triangle as the sum ofthe area for two right triangles, then we'll substitute the expressionsfor these (sine we know how to alulate them), and then we'llregroup: area△ = areaL + areaR

=
1

2
bLh +

1

2
bRh

=
1

2
(bLh + bRh)

=
1

2
(bL + bR)h =

1

2
bhWe an fator out 1/2 and h and group the addition of bL + bR forthe same reasons that 7 · 10 + 7 · 3 = 7 · 13.For the remaining ase of a triangle with the peak not over thebase, let's still draw a line down vertially to the point where itmeets the extension of the triangle base.



EXAMPLE 2: AREA OF TRIANGLES 49For our alulation this time, we'll alulate the area of triangleABC as the area of triangle ADC minus the area of triangle BDC:area△ABC = area△ADC − area△BDC

=
1

2
bh − 1

2
bRh =

1

2
(bh − bRh)

=
1

2
(b − bR)h =

1

2
bLhWe begin by �rst substituting the expressions for the area of theright triangles. The next steps are to again fator out both 1/2 and

h and group the subtration of bR from b. Again, we an do thisfor the same reasons that 5 · 20− 5 · 2 = 5 · 18. Next, sine b − bRis just bL, we substitute bL for b − bR to get our result.We have found that, just as for right triangles, eah trianglewithout a right angle (peak over the base, peak outside base), thearea is also one half of the base times the height. This also helpsus understand the meaning of the height of a triangle. It is thedistane that the peak of the triangle rises above the base along asquare orner (or right angle). In the diagram below, the 5 trianglesare all on the same base and have the same height (peaks on thedotted line) and so have equal areas5:
Now, try your hand at the following exerises to pratie andhek that you an work with equations. If you are not sure ofyour answer, don't let it go, be sure to hek with someone whowill know and an help you understand it.5Heath's translation of Eulid's proposition 37 of Book I is: Triangles whih are on thesame base and in the same parallels are equal to one another. Our intuitive approah tounderstanding this result is algebrai whereas the beauty of Eulid's approah is in the self-ontained system of Eulidean Geometry that derives results from de�nitions, postulates,ommon notions, and previously obtained results using dedutive reasoning, a system thathas been a suessful model for mathematis and formal reasoning for 2300 years.



50 APPENDIX A. SIMPLE EQUATIONSExerisesSee also exerises 1 and 2 on page 23 of Chapter 3.1. Solve the following equations for x (and hek your answers):(a) x + 3 = 15(b) x/4 = 12() x/4 + 3 = 15(d) 2x − 3 = 17(e) x − 7 = 3x − 192. Kate is two years older than her sister Madeline and four yearsolder than her brother Doug. All together, their ages add upto twie Kate's. How old is Kate?3. This exerise explores an equations for sale models. Supposethat you know the dimensions of an objet suh as a bridge(perhaps from arhitetural drawings), and want to make amodel of it that is smaller, so that eah piee of the model issmaller than in the real bridge by the same fator. Let's usethe following equation where the size of a piee r in the realbridge is multiplied by the sale fator f to give the size of thepiee m in the model:
r · f = m(a) Suppose that the real bridge is 500 meters long, and thatyou want to build the model so that it is exatly 1 meterlong. Substitute the numbers into the saling equationand solve for the sale fator f .(b) Find out how big a model support should be if that sup-port is 25 meters long in the real bridge, by substitutingthe sale fator you found in part (a) into the saling equa-tion for f , substituting the real length 25 meters in for r,and solving for m.



EXERCISES 51() Convert the size of the model piee your found in part (b)from meters to entimeters by multiplying it by 100.4. This exerise asks you to onvert the lever-work equation ofChapter 3 page 20:Load ·Work_Distane = E�ort · E�ort_Distaneinto a (perhaps) more usable form by using the saling equa-tions:Work_Distane · Sale_Fator = E�ort_DistaneLoad_Arm · Sale_Fator = E�ort_Arm(a) First, divide the �distane� saling equation byWork_Distaneto �nd the �rst expression for the Sale_Fator .(b) Seond, divide the �arm� saling equation by Load_Armto �nd the seond expression for the Sale_Fator .() Next, divide both sides of the lever-work equation byWork_Distane and group the distane terms into a fra-tion on right hand side.(d) Now, reognize the fration on the right hand side ofthe equation you get in () as the �rst expression forthe Sale_Fator you found in part(a), and substitute inits plae the seond expression for the Sale_Fator youfound in part (b).(e) Finally, multiply the equation you �nd in part (d) byLoad_Arm to end up with the following leverage equa-tion: Load · Load_Arm = E�ort · E�ort_Arm(f) Suppose you have a 20 pound bag of grass seed, plaed ona teeter-totter 6 feet from the pivot point, and that youbalane the teeter-totter when you stand 1 and 1/4 feetfrom the pivot point. How muh do you weigh?
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Appendix B
Vetors
In this appendix, we examine more thoroughly the algebra of ve-tors, inluding how adding vetors in a line redues to the algebraof numbers (salars). Our �nal stop will be the full vetor algebraformulation of the work equation.We've already talked in hapter 1 on page 3 about how foreshave both a magnitude (amount of push or pull) and a diretion.How they are onveniently represented by arrows, and how thesearrows form an algebrai system of what are known in mathematisand physis as vetors. Sometimes, instead of arrows, people referto the representations as direted line segments. In this appendix,we'll take a loser look at this algebrai system of vetors, startingwith a di�erent example, one that may seem more natural thanfores.You've already had a ouple of hints about this more familiarsystem of vetors. In fat, you may already have guessed what itis. Reall from hapter 1 when we were talking about two foresaneling eah other out and adding up to zero. Now think aboutthe part of hapter 2, lifting a stone twie as far, whih mightsuggest adding the lift distanes. What am I talking about? I amtalking about straight-line displaements: a motion, or movement,some distane along a straight line. We an even dispense with the�straight line� restrition if we are willing to onsider only the start53



54 APPENDIX B. VECTORSand end points of the motion (though, in more ompliated ases,the intermediate path an make a di�erene).Eah displaement an be represented as a ombination of mag-nitude or size (the distane from the start to end point) and a di-retion (from the start point to the end point). This ombinationof magnitude and diretion of displaements an be represented byan arrow with the tail at the start point and the tip at the endpoint.

There are six vetors represented in the diagram above. Four ofthem are labeled with their diretion1 and length and the remaining2 vetors are labeled A and B. The diagram is meant to depitthree dimensional objets. To understand the diagram, we imaginethat north is straight ahead into the page, so the displaementvetor N 7 feet is 7 feet into the page (in the diretion of the pagein front of us). We imagine the vetor S 3 feet points out of thepage (from the page towards us) 3 feet, the vetors A and B pointout of the page to our right, and the vetors U 2 feet and E 4 feetlie in the plane of the page.1Let's use the �rst letter of the diretions : Up, Down, North, South, East, andWest.



SCALING VECTORS 55With displaements as our intuitive guide to vetors, let's diveright in and talk about algebrai operations involving vetors, start-ing with saling.Saling VetorsThe onept of saling an objet is, essentially, to hange its sizewith all parts either growing or shrinking by the same amount sothat the shape stays the same. We assoiate this onept with themathematial operation of multipliation by a number alled thesale fator, or salar, that represents this shrinking or grow-ing amount. For example, onsider making the displaement ve-tor S 3 feet twie as long. This would beome a displaement of
S 6 feet. We an write this as:

2(S 3 feet) = S 6 feetIn a similar way we ould sale the vetor A by a (sale) fatorof 2 writing the result as: 2A. Or we ould make it half as longvia any one of: 1/2A, 0.5A, or A/2. Moreover, we an sale anyof the vetors, say B, by any salar c as: cB. Notie that saling avetor hanges its length, but not its diretion (depending on howyou think about opposite diretions). Let's take a loser look atthis by fousing on the NS line, ignoring measurement units likefeet or meters for the time being, with the vetor N 1 pointing tothe right:
Notie that saling by 2 gives N 2, saling by 4 gives N 4, andsaling by 0 gives a vetor with 0 length. Notie that this lastvetor has no length. In this sense it also has no diretion. On the



56 APPENDIX B. VECTORSother hand, it an have any diretion we are to hoose, and sinethere is no length, it doesn't really matter. For these reasons, let'sdenote this zero vetor using just its length, 0. To distinguishthe zero vetor from a salar (we haven't de�ned multipliation oftwo vetors yet, and when we do, it will be di�erent from saling),we'll denote the zero vetor in boldfae as: 0.Now, this last saling result will be true for any of our fore ordisplaement vetors. Saling any of these vetors, V, by zero willgive the zero vetor:
0V = 0Next, notie that saling N 1 by 2 gives N 2, and that saling

N 2 by 2 gives N 4. We an write this as: 2(2(N 1)) = 2(N 2) =
N 4 = 4(N 1). This is another result that will hold for any of thefore and displaement vetors, V, and any salars a and b:

a(b(V)) = (ab)VWhat about saling by negative numbers? If we think of mul-tiplying by a negative number as giving a saled vetor in the op-posite diretion, hanging a north vetor into a south vetor, thenwe will keep the saled vetors on the line so that integer multiplesof N 1 orrespond to integers on the number line. In terms of ourvetors, we'll have: −1(N 1) = S 1. In a similar way, we an thinkof multiplying the vetor S 1 by negative 1 giving the vetor in theopposite diretion: −1(S 1) = N 1.This gives us a geometri interpretation of multiplying by minusone as hanging to the opposite diretion. Combining these last twoequations we have: −1(−1(N 1)) = −1(S 1) = N 1 = 1(N 1).This lets us interpret the equation −1 × −1 = 1 as: hanging tothe opposite diretion twie is the same as not hanging at all .We'll soon see that this interpretation will ontinue to makesense when adding vetors, whih is our next topi.



ADDING VECTORS 57Adding VetorsThe rule for adding vetors is essentially the same as ombining dis-plaements when you think about it in the following manner. Tohelp us visualize, let's be spei� and onsider the displaements
N 3 feet and E 4 feet. How should we ombine these two displae-ments? Hopefully, it will seem natural to move north 3 feet andthen move east 4 feet:

The result of this ombined displaement is just the displae-ment from our starting point, the origin, to the ending point. Wean think of moving the tail of the seond displaement to the tipof the �rst displaement. This is the rule we use to add two vetors
A and B: the sum of the vetors A and B is from the tail of Ato the tip of B when B's tail is moved to the tip of A:



58 APPENDIX B. VECTORSWhat if we had moved the tail of vetor A to the tip of vetor B.The resulting sum is the same: A+B = B+A. Why? The reasonis that the resulting sum vetor is the diagonal of the parallelogramformed from A and B regardless of whether we move along A or
B �rst. In fat, the rule for adding vetors is often known as theparallelogram rule or parallelogram law of vetor addition.Furthermore, this result will be true for any of our displaementvetors, U and V (fore vetors too, but let's not try to ombinefores and displaements just yet):

U + V = V + UNow let's think about what this means if the vetors lie onthe same line. In this ase the parallelogram ollapses into a linesegment. The vetors being added as well as the resulting sumvetor lie on the line, and as long as we keep that line in mind,the algebra of these vetors redues to the algebra of their signedlengths. We pik one diretion of the line as positive, like we didwith N 1 for the saling example, and then assign lengths in theother diretion as negative, the length of S 1 being -1:
Finally, sine you now know how to sale and add vetors, youalso know how to subtrat them. For example, if you want to knowabout A−B, just think of it as A+(−B) where, of ourse, −B isjust B saled by -1, that is −1B, whih we saw above is B in theopposite diretion.Dot ProdutTo get to our �nal destination for this appendix, we need one lastalgebrai operation that ombines two vetors to give a salar, a



DOT PRODUCT 59sort of multipliation of vetors. This operation is typially alledthe dot produt of vetors and takes its name from the notationwith whih it is usually written. Given two vetors, A and Btheir dot produt is written as A • B, and we an use the arrowrepresentations to think of it geometrially as follows:

First, projet the vetor B at a right angle onto the line ofvetor A (so that the line from the tip of B to the line of A makesa square orner). Then multiply this signed length (the diretion of
A is positive), by the length of A. For example, the value of A•Bin the diagram above is positive, beause the part of B projetedonto A is in the diretion of A. The value of A • (−B) is negativebeause the part of−B projeted onto A is in the opposite diretionof A and so has a negative signed length (with respet to A):



60 APPENDIX B. VECTORSThis brings us lose to our �nal destination. The essential ob-servation is that the dot produt aptures exatly the properties ofwork that we disovered bak in Chapter 2. First, it aptures themultipliative nature of the two vetors it ombines. For instane,if the vetor A is twie, half, or �ve times as big, then so is theprodut A • B. Similarly for the vetor B. Just what we needfor doubling the work by doubling the lift distane or the objetweight.Seond, notie that the dot produt throws away the part of thevetor B that is not in the diretion of (the line of) A. Think of thevetor B as being formed as the sum of a vetor B‖ in the line of
A, and a vetor B⊥ at a right angle to A. The dot produt keepsonly the part B‖ in the line of A. This is why the dot produt isknown more funtionally as the inner produt2 of the vetors Aand B.

Now, reall how we disregarded the horizontal motions (dis-plaements) of objets being lifted beause they did not feel theweight of the vertial fore of gravity. Using the above diagram to2You may imagine a multipliation of the vetors A and B omposed from A and thepart of B at a right angle to A that is alled the outer produt of A and B. Inter-estingly, this produt is often denoted with a wedge, A ∧ B, and is also frequently alledthe wedge produt. It is also known as the exterior produt and leads to fantastiallyinteresting and produtive areas of mathematis known as exterior (or Grassmann) algebraand di�erential forms. However, perhaps even more interesting, powerful, and produtiveis the ombination of the inner and exterior produt known as the geometri produt:
AB = A • B + A ∧ B. Lukily, there is a great book by David Hestenes titled New Foun-dations for Classial Mehanis that you an onsult for more on this.



DOT PRODUCT 61represent this would have the vertial diretion Up in the diretionof A, with A representing the fore of our lift (the negative of thegravitational fore on the objet), B representing the resulting dis-plaement of the objet, B‖ representing the vertial displaement,and B⊥ representing the horizontal displaement.Finally, notie how the dot produt results in a salar: a numberhaving no preferred diretion. With all of this in mind we an nowsee that we an apture these properties of work in a vetor equationthat inorporates our previous work equation into the followingvetor work equation:
W = F • Dwhere W is the (salar) work done by applying the fore vetor Fthrough the displaement vetor D.



62 APPENDIX B. VECTORSExerisesHaving introdued the geometri onepts assoiated with vetors,I feel obligated to o�er these exerises to explain how to alulatewith them. Having said that, I would not be o�ended if you stophere and ome bak to this only when you feel either the need fora hallenge, or a burning desire to know how this all works.Calulations with vetors are often more straight-forward whenthe vetors are spei�ed by their Cartesian oordinates3 (ratherthan with a diretion and length). This done by listing the o-ordinates of the point at the tip of the arrow. For instane, let'srestrit our attention to the vetors that lie in the NS-EW planeand speify eah vetor by a pair [x, y] of oordinates of the tip ofthe vetor. Let's let x be the east oordinate, and y be the northoordinate. Then we have the following Cartesian oordinates forthe vetors from the NS-EW plane of our diagram on page 54:

3Cartesian oordinates are named after a fellow named René Desartes who, like IsaaNewton, lived hundreds of years ago. He thought that doing geometry ought to be easier thanthe Greek method espoused by Eulid, and went on to invent analyti geometry. For moreon this, or just for an intriguing story, hek out Amir Azel's Desartes's Seret Notebook:A True Tale of Mathematis, Mystiism, and the Quest to Understand the Universe.



EXERCISES 63Let's take a look at how saling a vetor V = [x, y] by the fator
c a�ets the oordinates:

Notie that, due to the similarity of triangle 0:V:x to triangle
0:cV:cx (and 0:V:y to0:cV:cy), hanging the length of V to cVhanges x to cx (and y to cy):

cV = c[x, y] = [cx, cy]1. Fill in the entries of the following table, then plot the vetorson a sheet of graph paper and label them:V 2V 0.5V -3V[x, y℄ [2x, 2y℄ [0.5x, 0.5y℄ [-3x, -3y℄0 10 -34 04 -3-2 0-2 -2



64 APPENDIX B. VECTORSNow, let's take a look at adding the vetors V = [x, y] and
U = [w, z] using Cartesian oordinates:

Notie that, as we move the vetor U to the tip of the vetor
V to form the sum V + U, we add w to x and z to y:

V + U = [x, y] + [w, z] = [x + w, y + z]2. Fill in the entries of the following table. On a sheet of graphpaper: plot and label the vetors, and sketh the parallelo-grams:V U V+U[x, y℄ [w, z℄ [x+w, y+z℄0 1 2 00 -3 -2 24 0 -1 14 -3 -2 -2-2 0 1 0-2 -2 -1 -1



EXERCISES 65Finally, in order to �gure out how to alulate the dot produt,we'll need to know that for any vetors V, U, and T, and anysalar c the dot produt has the following properties:
(dU) • (cV) = dc(U • V)

T • (V + U) = T • V + T • U

V • U = U • VOne we know these, we'll be able to �gure out (see exerise 6below) that for vetors V = [x, y] and U = [w, z]:
V • U = [x, y] • [w, z] = xw + yz3. Fill in the following table, and, on a sheet of graph paper:plot and label the vetors, projet the vetor U onto the lineof vetor V (use the orner of a separate sheet for the rightangle), and then (use a separate piee of graph paper likea ruler to) measure the projeted length, the length of V,multiply them together, and ompare results:V U V • U[x, y℄ [w, z℄ xw + yz0 1 2 21 -3 3 14 0 0 14 -3 0 1-2 0 2 2-2 -2 2 24. Notie that aording to our de�nition of the dot produt, thedot produt of a vetor with itself is just the length of thevetor squared, sine the length of the projetion of a vetoronto itself is the whole length of the vetor we start with. Thisallows us to alulate the length of a vetor V (a ommonnotation for this is |V|) as the square root of the dot produtof the vetor with itself:

|V| = Length(V) =
√

V • V



66 APPENDIX B. VECTORSFill in the entries of the following table:V V • V
√

V • V[x, y℄ x2 + y2
√

x2 + y20 11 -34 04 -31 1-5 12
a b5. This exerise explores the use of the dot produt to measureangles between vetors. Suppose we are given two non-zerovetors V and U. Let's write ∡VU to represent the angle be-tween them. One di�ulty we run into is that the dot produtinorporates the length of the vetors into the produt, eventhough the angle between vetors does not hange with theirlength. To avoid this problem, we introdue the unit vetors

V̂ and Û in the diretion of V and U using the length
|V| and |U| of the vetors from exerise 4 as follows:

V̂ =
V

|V| =
1

|V|V and Û =
U

|U| =
1

|U|UWe have saled eah of the vetors so that it has unit lengthby dividing by its length. For example, we make a 2-unitvetor half as big. We an now generate a measure for ∡VUusing V̂, Û, and the the dot produt as follows. For historialreasons we all this partiular measure the osine of theangle between the vetors V and U:osine(∡VU) = V̂ • Û =
1

|V||U|V • UFill in the entries of the following table, and, on a sheet ofgraph paper, plot and label the vetors. Notie what happensto the osine value as the angle ∡VU goes one around a irlein the order listed in the table:



EXERCISES 67V √
V • V U √

U • U V • U Cosine(∡VU)[x, y℄ √

x2 + y2 [w, z℄ √
w2 + z2 xw + yz xw+yz√

x2+y2
√

w2+z21 0 1 01 0 12 51 0 4 31 0 1 11 0 3 41 0 5 121 0 0 11 0 -1 11 0 -1 01 0 0 -16. This exerise leads us from geometry to our Cartesian oordi-nate formula for the dot produt.(a) Convine yourself that (dU) • (cV) = dc(U • V) for var-ious c, d, V, and U by using the saling diagram on page63. Think of the horizontal line as the line of U withthe length of U being u, and how saling U by d hangesthe length from u to du. Notie how U • V = xu and
(dU) •V = xdu. Now notie how saling V by c hangesthe last one to (dU) • (cV) = cxdu = dcxu = dc(U •V).(b) Convine yourself that V • (U + T) = V • U + V • Tfor various V, U, and T by using the addition diagramon page 64. Think of the horizontal line as the line of Twith the length of T being t, and how the dot produt onthe left hand side is (x + w)t and on the right hand sidethe sum of the dot produts is xt + wt.() Convine yourself that V •U = U • V for various V and
U as follows. Think of V • U and U • V, using part (a)as:

V • U = (|V|V̂) • (|U|Û) = |V||U|(V̂ • Û)

U • V = (|U|Û) • (|V|V̂) = |U||V|(Û • V̂)



68 APPENDIX B. VECTORSSine the lengths are just salars, |V||U| = |U||V|. Now,onvine yourself that the following diagrams show that
V̂ • Û = Û • V̂ for various V̂ and Û:

You'll probably need Eulid's Book I Proposition 26 thatsays triangles with two angles and a side equal, are equal4(for the ase on the right, you need to know Book I Propo-sition 15 about vertial angles being equal (or see Chapter3 Exerise 1)).(d) Next, introdue the vetors i = [1, 0] and j = [0, 1] andnotie that sine they form a right angle, eah projetsa length of 0 onto eah other, so that: i • j = 0 = j • i.Furthermore, sine eah is of unit length and the dot prod-ut of a vetor with itself is the length squared, we have:
i • i = 1 = j • j.(e) Finally, notie that, due to the way saling and vetoraddition work, we an write the vetors V = [x, y] and
U = [w, z] as:

V = xi + yj and U = wi + zj4This is more ommonly known as theAAS rule, and unlike the SAS rule, an be provenby staying stritly within the system of Eulidean geometry.



EXERCISES 69We an now evaluate the dot produt as follows:
V • U = (xi + yj) • (wi + zj)

(by 6b) = (xi + yj) • (wi) + (xi + yj) • (zj)

(by 6c) = (wi) • (xi + yj) + (zj) • (xi + yj)

(by 6b) = (wi) • (xi) + (wi) • (yj) + (zj) • (xi) + (zj) • (yj)

(by 6a) = wx(i • i) + wy(i • j) + zx(j • i) + zy(j • j)Now verify that when you plug in the 0's and 1's frompart (d) you get the result wx + zy whih is the same as
xw + yz.
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Azel, Amir D. Desartes' Seret Notebook: A True Tale of Math-ematis, Mystiism, and the Quest to Understand the Uni-verse. Published by Broadway Books, 2005.A thoroughly enjoyable aount of the in�uential irumstanesand events, life and developments, and ontinued ontributionof the adventurer, philosopher, and mathematiian: the inven-tor of analyti geometry, Rene Desartes.Berlinski, David. Newton's Gift: How Sir Isaa Newton Unlokedthe System of the World. Published by Simon & Shuster,2000.An intriguing investigation of the life and genius of one ofthe priniple founders of physis and mathematis that is sureto leave you with an awesome appreiation for the profounddevelopments that form the reliable foundation for modernsiene and philosophy.Heath, Sir Thomas L. Eulid: The Thirteen Books of the Ele-ments. Seond edition, unabridged, published by Dover Pub-liations, 1956.My reommendation for a �rst reading is to start with Book I:De�nitions (volume 1, page 153), read only the translations ofthe de�nitions, axioms, propositions and proofs (skip the om-mentary), and make your way through to Proposition 47 (thePythagorean Theorem) and its orollary, the last propositionof Book I, Proposition 48. 71



72 APPENDIX B. VECTORSHestenes, David. New Foundations for Classial Mehanis. Se-ond edition, published by World Sienti�, 1999.A fantasti introdution to geometri algebra and alulus(modern vetor algebra and alulus) and its use as a pow-erful and expressive language for physis. Written by a vision-ary and enthusiasti proponent, this book not only introduesthe mathematis in a desriptive, intuitive, and insightful way,but also follows through with its ground-breaking use appliedto analyti geometry, lassial mehanis (inluding in-depthtreatments of many-partile systems, osillations, rotations,and elestial mehanis) and relativisti mehanis.Long, Lynnette Painless Algebra. Seond edition, published byBarrons Eduational Series, 2006.The lear and simple tone together with the funny ommentsand illustrations make it a fun and aessible introdution toalgebra: numbering systems, arithmeti expressions, variables,equations and other relations. The sets of �Brain Tikler�exerises are short and well suited for self study. You'll eitherhave to over frations on you own or use something like AlyeeCummings' Painless Frations .Netz, Reviel and Noel, William. The Arhimedes Codex: Howa Medieval Prayer Book is Revealing the True Genius of An-tiquity's Greatest Sientist. Published by Da Capo Press,2007.In addition to being a fasinating story of the history of Arhimedes,bibliographi tehnology, the Arhimedes odex, and how itsserets were reovered, this book also desribes the meaningof some of the information revealed. Most surprising to meis Arhimedes use of the lever to obtain the area ontainedunder a parabola, and how his reasoning reommends a more(perhaps intuitive) geometri approah to integration.Ward, Mihael Introdution to Roket Siene: How high will itgo? Available (soon) at http://www.math2learn.org/, pub-



EXERCISES 73lished by Mihael Ward, 2010.I an't think of a more exiting way to ome to grips withfores, mass, aeleration, veloity, and Newton's seond lawof motion (F = ma) than by �guring out how high your modelroket will go. This pamphlet gets you started with the alu-lations and then helps you re�ne them to inlude: orretionsfor air resistane (drag), non-onstant thrust pro�les, dereas-ing mass due to spent propellant, and even multiple stages.











Fores, Work, and Simple MahinesSimple mahines have been helping us work sine beforewe ould write. They help us move things more easily andahieve more than we ould without them. They help uslift boulders, pry things apart, stak them together, trans-port objets and ourselves.In order to understand a few of these simple mahines andhow they work we'll use some basi math and physis (in-trodued as we need it).My hope is that one you know what these simple mahinesare, and how they work, you'll be able to see them at workin the world around you and put them to work for yourself.I also hope that one you see how easy it is, you'll start toapply the same priniples we use to understand these sim-ple mahines to other mahines and even more ompliatedand subtle systems.


