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Preface

Simple machines have been helping us work since before we could
write. They help us move things more easily and achieve more
than we could without them. They help us lift boulders, pry things
apart, stack them together, transport objects and ourselves.

In order to understand a few of these simple machines and how
they work we’ll use some basic math and physics (introduced as we
need it).

My hope is that once you know what these simple machines are,
and how they work, you’ll be able to see them at work in the world
around you and put them to work for yourself. I also hope that
once you see how easy it is, you’ll start to apply the same principles
we use to understand these simple machines to other machines and
even more complicated and subtle systems.
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Chapter 1

Forces

One of our main concerns will be the movement of an object from
one location to another. In order to move an object we’ll apply
either a push or a pull. Since we’ll be talking quite a bit about
these pushes and pulls, we’ll use the technical term from physics,
and call each push or pull a force. Forces are what move things
around in the world. We owe this idea to Issac Newton who lived
hundreds of years ago (from 1642 to 1727). He figured out rules for
how forces make things move. There are three basic rules that that
make up Newton’s Laws of Motion. In very basic language, the
first two laws can be stated as:

1. Without forces, things remain in a constant state of motion.
If they are already moving, they keep moving in the same
direction and at the same speed. If they are not moving, they
stay put.

2. Forces cause things to change their motion in the direction of
the force. The more force, the bigger the change.

Newton’s laws of motion opened the door to understanding why
objects fall to the ground and why the moon orbits the earth. Of
course, you probably already know I am talking about the force
called gravity. In honor of figuring all this out, forces are often

1



2 CHAPTER 1. FORCES

measured in units named after the person who gave us this in-
sight: Newtons (abbreviated as IN). However, since we are just
getting started with forces and trying to build up our intuition,
we'll start with a more familiar unit of force: Pounds!' (abbrevi-
ated as Lbs). Since approximately 4.48 Newtons is equal to one
pound, one Newton is approximately 0.223 pounds, about halfway
between a quarter and a fifth of a pound: 0.223 = 1/4.48.

You probably already have experience measuring some quanti-
ties like length, weight, and temperature that can be captured by
a single number. However, forces are a bit more complicated than
this. To see why, let’s start with temperature. Imagine a room with
a light-bulb on in the middle of it. Since the light-bulb functions as
a source of heat, we expect that temperatures near the light-bulb
are higher than than temperatures farther away. If we had some
sort of instant-read thermometer, we could move it throughout the
room, reading the temperature at various points.

You may wonder about kilograms at this point. However, there is a subtle distinction
between kilograms (which are units of mass), and pounds (which are units of force). This
becomes important with careful use of Newton’s second law, but in practice we can convert
between pounds and kilograms with an appropriate assumption and conversion factor. See,
for example, chapter 1 of my “Introduction to Rocket Science: How high will it go?”
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Now let’s imagine a comparable scenario for forces. Imagine a
similar room with a fan instead of a light-bulb. As the fan spins, it
pushes the air around in the room. As the air presses on things, it
exerts a force. One way to measure the force at a point in the room
would be (without disturbing the air flow) to release a small soap
bubble at that point and observe its change in motion at that point.
We would have to measure two different things about the motion.
We would have to notice both how quickly it started to move and
the direction in which it started to move. One of the most versatile
ways to represent such a measurement is with an arrow. The tail of
the arrow is placed at the measurement point, the tip of the arrow
points in the direction of the motion, and the length of the arrow
indicates the how quickly the motion changed at the measurement
point. These arrows form a mathematical system of vectors, and
there is a whole algebra of adding, subtracting, (several ways of)
multiplying, and even dividing vectors?.

2For a quick introduction to vectors see AppendixB.
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Let’s try this out with a force that we are all familiar with,
the one generated by the very planet on which we live, the earth’s
gravity. We’'ll consider the force of gravity on three stones, one
weighing 5 pounds, one 2 pounds, and a 1 pound stone, each being
pulled down toward the ground by different amounts. You can feel
the difference if you try to lift them. The 5 pound stone is harder
to lift: it is the heaviest. We can measure the force on each of the
stones with a weight scale. If our scale is accurate and measures
weight in pounds, the 5 pound stone will weigh ... 5 pounds. The
force of gravity will pull the stone down against the spring of the
scale until the needle® points to 5. The 2 pound stone will be pulled
down a little less than half of that, until the needle reads 2 pounds.
The 1 pound stone will be pulled down against the spring exactly
half as much as the 2 pound stone. The direction of the force in
each case is straight down, toward the center of the earth. To draw
the vectors for the force on each stone, we’ll first draw the arrow
down from the 1 pound stone with a convenient size for the arrow.
Then the arrow for the 2 pound stone will be twice as long, and
the one from the 5 pound stone will be 5 times as long.

<5

2 pounds 1 pound

5 pounds

\

3If you are using a digital scale, the stone pushes down against the pressure sensor and
the electronics either flip through digits or wait until readings stabilize enough to read 5.0.
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We could have used different sized arrows, but it is a good idea
whenever possible to use the same scale for all the vectors in the
same diagram. For example, if the stones weighed 50, 20 and 10
pounds instead of 5, 2, and 1 pounds, we could use the same dia-
gram, using the same arrows to represent the forces (except differ-
ent labels) because 20 pounds is just 2/5ths of 50 pounds, just as
2 pounds is 2/5ths of 5 pounds. (See exercise 4.)

Now, let’s use this concept of force to consider* a 20 pound stone
sitting still on the ground. We know gravity is pulling down on the
stone. If forces make things move, why is it just sitting there not
moving? You probably already know the rock doesn’t move because
it is on the ground, and the ground is firm and doesn’t budge much
even when you jump on it. Let’s change the way we are thinking
about it.

We can think of the ground pushing up on the stone, just like
gravity is pulling it down. In fact, we think of the ground pushing
up on the stone just exactly as much as gravity pulling down on the
stone, so that the two forces on the stone are in opposite directions
but have the same magnitude, canceling each other out. We say
that the sum of the forces is zero. The pressure to move down is
exactly canceled by an upward pressure in a way that is similar to
the way that a motion 3 feet to the north is canceled by a motion
3 feet to the south. When we add the two motions together we end
up right where we started.

The case of adding two vectors of the same length, but opposite
directions is one of the simplest examples of adding vectors. Let’s
take a look in the following diagram:

4An experiment we perform only in our minds is known as a thought experiment and
performing them is a proud tradition in physics, though using your mind to figure things
out only by thinking about them is not unique to physics and is a generally a good idea ;™)
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The two forces exactly
cancel each other,

adding up to zero force,
so the rock does not move

(Newton's 1st law of motion). 20 pounds from the ground

pushing up on the sfone

i

> 20 pounds from gravity

/

More generally, when two vectors lie on the same line we simply
add their signed magnitudes, where we pick one direction of the
line as positive and the other as negative. In our case we can pick
up as positive and down as negative so that we have -20 pounds of
force from gravity and +20 pounds of force being supplied by the
ground. When we add them together we get a resulting force of 0
pounds so that, by Newton’s 1st law of motion, the rock stays put.
(For more on adding vectors, see appendix B.)

Now, let’s continue to use this concept of force to consider what
happens when we lift the 20 pound stone up from the ground onto a
picnic table. We bend down (with our legs, not our backs), extend
our arms and put our hands underneath the stone on both sides so
that everything will stay balanced (so the stone doesn’t fall as we lift
it), grab the stone, and then we start to lift (with our legs). We start
to apply force with our leg muscles. To be most effective (to use the
force of our leg muscles most efficiently) we lift straight up, directly
countering the force of gravity that is pulling the stone straight
down. (We'll talk more about force, the direction of motion, and



resulting work in the next chapter).

If we lift very slowly, gently increasing how much strength we
use, at first nothing happens except that we feel increasing pressure
in our hands and legs. Increasing the use of our muscles slowly, we
feel the stone move up and away from the ground just at the point
at which we apply exactly as much force up as gravity is pulling
the stone down. As we put more muscle into it, the stone moves up
more quickly. This is Newton’s 2nd law of motion: as the resulting
sum of forces becomes greater, the stone increases its motion in
that direction. As we gently decrease our effort, the rock comes to
a stop with us (instead of the ground) pulling up on the rock just
enough (20 pounds worth) to counter the pull of gravity.

Before we move on to consider the work done when we move
objects around, try your hand at the following exercises to test
your understanding so far.
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Exercises

1. Make a diagram with two stones: a 6 pound stone sitting on
a table, and 3 pound stone that is just beyond the edge of
the table, at the height of the table, falling toward the ground
(as if it has just been pushed off the table). Draw arrows to
represent the forces on both the 3 pound, and the 6 pound
stone.

2. Think about the situation where we are starting to lift a 20
pound stone up, off of the ground. Suppose that we start
lifting with 5 pounds of force, and the rock is not yet mov-
ing. With how much force must the ground still be pushing
up against the rock to exactly counterbalance the remaining
gravitational force? Make a diagram with the rock on the
ground and the 3 force arrows that summarize this situation:
one force arrow for gravity, one for your 5 pound lift, and the
third for the push of the ground. Draw all of the arrows with
their tail as a dot at the center of the stone. Be sure to label
the arrows as in the diagram back on page 6.

3. Suppose that you weight 100 pounds and that you can easily
walk up stairs and jump up and down.

(a) At a minimum, how much force can you generate with
both legs?

(b) Suppose that both legs are equally strong. At a minimum,
how much force can one leg generate?

(c) Suppose that you can jump up and down on only one leg.
At a minimum, how much force can that one leg generate?

4. Just as 2 piles of 5 beads is 2 x 5 =5+ 5 = 10 beads, and 3
groups of 4is 3x 4 =4+4+4=12,2 times 1/5this 2 x 1 =
%+% = % = % More generally, we have in a similar way, for
any integers n, m, and non-zero d: mx 4 = 544 = "5
Similarly, & x m = 5 +-.-+ % = T2% Use this along with the
fact that the denominator d of the fraction represents division

by d to find the integer value for 2/5ths of 50: 2 x 50 =?




Chapter 2

Work

We already have some intuition about work from what we feel when
we move things (including ourselves) with our bodies. In this chap-
ter we’ll use this together with the idea of forces from the last chap-
ter as a guide to help us generate a definition of work. This will
help us gain a deeper understanding of work, including a surprising
result about something that feels like work, but won’t count toward
the way we measure it.

You probably know when you’ve done some work, say, lifting a
20 pound stone from the ground up onto a table. You can feel in
your legs (if you are lifting properly) that you’ve done some work.
You've applied a force to the rock and moved it some distance, say
2 feet. How much force was applied? 20 pounds of force. Until you
apply 20 pounds of lift to the stone, it stays put. Once you balance
the downward force of gravity exactly with an upward directed force
to cancel it, the stone is free to move in an upward direction with
an application of additional force in that direction. In this chapter,
we’ll quantify (figure out how to assign numbers to) the amount of
work using mathematics you probably already know.
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The same stone lifted an

. additional, equal distance is
an addifional, equal quanfifty
of work.

A stone lifted so far
is a quantity of work.

7,

We start with a couple of simple observations. First, we’ll want
to arrange things so that if we lift the stone twice as high, we've
done twice as much work. Similarly, if we lift the stone only half
as high, we’ve done only half as much work. We can capture this
in a mathematical expressions by multiplying by the distance that
we’ve lifted the stone so that we have, so far:

Work = (some math expression) X Distance

Multiplication by distance captures this aspect of work nicely. If
we lift something three times as far, we've done three times as
much work. We’ll have more to say about direction and distance
later, but before we take a closer look at that, let’s include a second
observation in our mathematical definition of work.
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A stone lifted so far
is a quantity of work. An equal weight lifted the
% same distance is an equal

quanfity of work.
<
N S
~ ~

The second observation we’ll want to capture is that if the stone

weighs twice as much (think of it as split into two equal parts), and
we lift it the same distance, we’ll again have done twice as much
work. Similarly, lifting a stone that weighs only half as much re-
quires only half as much work. To finish off our mathematical
definition of work, we have to combine this with the downward
gravitational force of the stone from the last chapter. In particu-
lar, to lift the stone, we exert a force on the stone that counters
the gravitational force causing the stone’s weight. From our per-
spective, the work we’ve done in lifting the stone is the following
multiplicative combination of not only how far we've moved the
stone, but also the amount of force we’ve had to apply to move it:

Work = Force x Distance

We'll call this the work equation and we’ll use it to find nu-
meric values for work. So, for example, in lifting a 20 pound stone
2 feet we do 40 foot-pounds worth of work. Lifting a 10 pound
stone 3 feet requires 30 foot-pounds of work.

Here comes the surprising part of our definition. What if we
push on a really heavy boulder sitting on the ground, one that
weighs, say, 1000 pounds, without moving it? Since the distance
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moved is zero, we haven’t done any work even though it feels like it.
However, if we think about it the right way, this makes sense: even
though we may push really hard against the boulder, we haven’t
really accomplished any work, even though we may use a signifi-
cant amount of energy trying. This reflects the fact that with our
quantitative definition of work we are measuring results external to
ourselves, in the world, not internally, how they feel inside.

Now, let’s continue with our example, thinking about lifting a
20 pound stone 2 feet to set it on a table. In addition to lifting the
stone, there is a force and distance required to move it over to the
table top:

This displacement of 1 foot
requires a negligible force and
does nof contribute to the work.

Table |

This displacement of 2 feet
requires a force just greater
than 20 pounds and contributes
40 foot-pounds to the work.

=

This brings up a number of interesting questions about the kinds
of work done in lifting the stone and setting it on the table. The
first distinction we make is between conserved and unrecoverable
work. Conserved work is work that is stored in some way that
allows recovering the work. For example, in lifting the stone from
the ground to the table height, we have stored the work in the



13

height of the stone. We could get 40 foot-pounds back out of this
configuration, by letting the stone fall through the 2 feet, back to
the ground, perhaps lifting something else as it falls. The potential
work that is stored in the height of the stone is called potential
energy.

What about once we’ve lifted the stone, and are just holding it
up without moving it? Just as with the 1000 pound boulder sitting
on the ground: even though we are spending energy to keep the
stone at the height (it feels like work), according to our definition,
since the stone is not moving (distance is 0), we are doing no work.

Next let’s consider the horizontal motion of the stone required
to set it on the table top. First we consider the horizontal motion
through the air with no' resistive forces. We use Newton’s second
law of motion that tells us: without some force to cancel it, even the
tiniest force on the stone in the direction of the table top will cause
the stone to start moving in that direction. We’'ll leave figuring out
exactly how much force and how fast the stone moves to a more
advanced investigation of Newton’s laws?. In this pamphlet, we’ll
simplify the situation to say that, in principle, we could make the
sideways force, and thus the work, as small as we’d like. In this
case we can ignore completely this non-resistive horizontal motion
of the stone. However, just so that you can know about the other
kinds of work and energy, we’ll briefly consider the other cases.

So, on the other hand, suppose that we pushed hard, increasing
the stone’s motion in the horizontal direction so much as to do a
significant amount of work. This work would also be stored, in this
case, in the horizontal motion of the stone. This is called kinetic
energy. We can recover the work by having the stone hit or push
something, performing some work for us, perhaps, storing it as

T should say “essentially no resistance” because there is some resistance just to push
the air out of the way. However, for our purposes, we will consider this exceedingly small
amount of work insignificant. Can you think of a situation in which pushing the air out of
the way is so much work that we must take it into account?

2For example, if you’d like to get involved with model rocketry, check out my pamphlet
“Introduction to Rocket Science: How high will it go?”
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potential energy with some ingenious mechanism (such a spring
and catch, or the lifting of some weight).

The final kind of work is unrecoverable. Unrecoverable work
is work that is lost and cannot be recaptured. This sort of work can
arise from sliding the stone along the table top. The configuration
of the table top surface with the stone pushing down on it causes the
two surfaces to stick together. The amount of stickiness depends
strongly on the nature of the surfaces and creates an opposing,
resistive force to our push called friction.

Consider an air-hockey table (providing a slippery cushion of
air) with the bottom of the stone being smooth, flat, and large
enough to keep the stone floating. Then the tiniest push will start
the stone sliding. In this case there is almost no force opposing a
push and we say that there is (practically) no friction. Moving the
stone 1 foot could take an insignificant amount of force (and thus
work), just like moving it through the air.

On the other hand, if the table has a rough, wooden surface
that creates a significant amount of friction, we might have to push
with 5 pounds of force in order to slide the stone. In this case,
the frictional force opposing a push is 5 pounds, and in sliding the
stone 1 foot across the table we would do 5 foot-pounds of work.
What happens to the work? Is it stored somewhere? It is, actually.
The rough surfaces rubbing together create heat.

You can try it with your hands. Try rubbing the palms of
your hands against each other, back and forth, while pressing them
strongly together. The harder you press your palms together, the
more friction you create, and the more heat you generate. Further-
more, the faster you rub your palms together, the more friction you
create, and the more heat you generate.

In general we can’t recover the work that creates heat. The
subject that deals with the study of heat, heat transfer and storage,
and exactly how (and how much) heat can be converted into work
is the area of science known as thermodynamics that we’ll leave
for some future investigation.
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Exercises

1. Fill in the empty cells in the following table:

Force Distance Work
12 pounds 36 foot-pounds
4 feet 36 foot-pounds
5 pounds 3 feet
6 Newtons 12 Newton-meters
7 Newtons | 3 meters

2. Suppose we have two ways to lift a 12 pound stone 2 feet. How
much force must be applied to lift the stone directly? How
much work is done? An easier way requires only 6 pounds of
force. If the amount of work is the same, over what distance
must the 6 pounds of force be applied?

3. Imagine being at the top of a steep hill on a bicycle.

(a) Coasting down the hill on the bicycle converts what sort
of energy into what sort of energy?

(b) When you apply the brakes, what sort of force are you
counting on?

(c) If the brakes are working well, what sort of energy is cre-
ated?

4. For this exercise, let’s suppose that all 100 pounds of your
weight is located at the center of your body. Suppose that
when you crouch down to jump as high as you can, the center
of your body is at a height of 1 and 1/2 feet, and that at full
extension your center is at a height of 3 and 1/2 feet. Further
suppose that during the jump your legs can apply a force of
200 pounds to lift your body through the jump when you are
trying to jump as high as possible.

(a) What is the displacement of the center of your body for
the portion of the jump during which your legs apply the
force?
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(b) If you are trying to jump as high as possible (using the full
force that your legs can supply), what is the work done
by your legs for this portion of the jump?

(¢) What is the minimum work required to lift your body for
this portion of the jump?

(d) What is the difference between the the minimum work
required and the work done by your legs when trying to
jump as high as possible?

(e) At the point your feet leave the ground, what sort of en-
ergy stores the extra work done by your legs identified in
part (4d). Will this energy continue to do work? Does it
influence the height of the jump?

(f) To what height do you expect the center of your body to
travel by applying 200 pounds of force with your legs?

5. In this exercise?®, suppose that all 100 pounds of your weight is
located at the center of your body. Suppose that your jogging
stride is 4 feet, and that with each jogging stride you move
your center of weight up only 1/2 foot. Assume that you
jog efficiently by not jumping during the stride, so that your
foot stays in contact with the ground for the complete upward
motion of your body, and any time spent cruising through the
air is in the forward and downward direction. (In other words,
assume that most significant part of the work of the stride is
spent lifting your body the 1/2 foot.)

(a) How much work is done with each jogging stride?
(b) Estimate the work done in running one mile (5280 feet).

(¢) Without changing your weight, name two ways to increase
your jogging efficiency (decease the work required to jog
a mile).

3Thanks to Asher Klatchko for the ideas behind this exercise.



Chapter 3

The Lever and Fulcrum

In this chapter we take a look at what must surely be one of the
simplest and first machines ever used by humans. We probably
first used these machines before we started writing stories to pre-
serve knowledge across generations. To make one of these simple
machines, all you need is a strong stick to use as a lever, a rock for
a fulcrum, and then you are ready to use it to tumble a boulder.
Let’s take a look at the basic configuration and name the essential
partst:

Effort —l

Effort Arm

Load

\r Load Arm

|— Fulcrum

Point of Effort

Lever

Point of Load

There are two fundamental parts of this simple machine: the
lever, and the fulcrum. An ideal lever is straight and strong. This

!Thanks to Jane Kenney-Norberg for this diagram.

17
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allows the full transfer of force from the point of effort to the point
of load. An ideal fulcrum comes to a point and is immovable (how-
ever, in practice a sharp point is easier to break and can damage
the lever more easily than a rounded point). The lever is composed
of two parts, the load arm and the effort arm. The load arm is
the part of the lever that extends from the fulcrum to the point
of load (where the load is located on the lever). The load is the
object to be moved or pushed against. The effort arm is the part
of the lever that extends from the fulcrum to the point of effort
(the position where force or effort is applied to move the load).

To see how a lever and fulcrum make lifting an object easier,
let’s take a look at a specific case: lifting a 24 pound rock, 1 foot,
using a 12 foot lever. Let’s place the fulcrum so that it divides the
lever into a 4 foot load arm, and 8 foot effort arm:

effort

L effort distance

A 1 foot
work distance

Let’s label the points of the load triangle ABF and the effort
triangle CDF. I've placed small squares at the corners B and D
to indicate those corner angles are the same as that of a square
(they’re called right angles) indicating that the work distance
and the effort distance are vertical. More to the point, the work
distance is along the line of gravitational force (weight) that the
rock feels and so, as we discussed in chapter 2, we can use the work
equation to determine the amount of work in lifting the rock as:

Work = Force x Distance
24 pounds x 1 foot
= 24 foot-pounds
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To further our understanding, we’ll ignore any friction at the
fulcrum or bending of the lever, and make the assumption that the
work done in lifting the rock is the same whether we lift it directly,
or use the lever and fulcrum. This is what is known in physics as
a conservation principle, a rule that says that some quantity
remains constant across some sort of change. In our case, work is
constant across the change of how we perform the work. We can
say that work is conserved or talk about the conservation of work
in simple machines. We can use this to better understand the effort
side of the situation, but first we’ll need a little geometry.

We need to observe that triangle ABF has the same shape as
triangle CDF'. In other words, the corresponding angles of the tri-
angles are the same? the angle at A is the same as the one at C,
the angle at B is the same as the one at D, and the angles at F are
the same. (For more on this see exercises 1 and 2.) This means
that the effort triangle and its parts are some multiple of the load
triangle and its parts®. This allows us to work out the scale factor,
since we know the lengths of the load and effort arm are 4 feet and
8 feet respectively:

Load_ Arm x Scale_ Factor = Effort_Arm
4 feet x Scale_ Factor = 8 feet

We can see that the scale factor is 2 in two ways: either by
figuring out what we have to multiply 4 feet by in order to get
8 feet, or by dividing both sides of the equation by 4 feet (see
Appendix A for more on working with equations). Either way,

2When two geometric objects have corresponding angles that are the same, we say the
objects are similar. When the objects have the same angles and size, we say they are
congruent. Rather than saying two line segments, angles, or triangles are congruent,
Euclid would have said “equal.”

3 Another way to say this is that the two triangles are in proportion: dividing correspond-
ing lengths gives the same ratio. That ratio is the scale factor, or multiple, mentioned in
the text. This is a combination of Euclid Book I propositions 28 and 29 about angles of
parallel lines, and Book VI proposition 2 about cutting a triangle with a line parallel to a
side.
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we know that the effort triangle and its parts are 2 times bigger
than the load triangle and its parts. This means that the effort
distance is 2 times 1 foot, or 2 feet. Let’s take a look at how this
configuration makes it twice as easy to lift the rock.

To lift the rock up, we push straight down on the effort end
of the lever so that the lever rotates about the fulcrum. We push
down through the effort distance of 2 feet. We now use the work
conservation principle to reason that the amount of work in lifting
the rock with the lever is the same as lifting it directly. Since we
know how much work it is to lift the rock directly, 24 foot-pounds,
we can now use the work equation to figure out how much effort
we have to apply to the effort arm to lift the rock:

Work = Force X Distance
24 foot-pounds = Force X 2 feet

This tells us that we only have to use 12 pounds of force to lift a
24 pound rock! It is twice as easy to lift the rock with the lever
and fulcrum! A lever with an effort arm twice as long as the load
arm has magnified our strength by a factor of 2. However, notice
(diagram page 18) that in order to lift the Load (24 pounds) the
Work_ Distance (1 foot), we had to apply the Effort (12 pounds of
force) through the Effort_ Distance (2 feet) so the amount of work
remains the same. This is the assumption we started with. Let’s
be even more explicit with the following lever-work equation:

Load x Work_ Distance = Effort X Effort_Distance

What we are really counting on to make sense of all of this is
that the work on the left side of the equation is the same as the work
on the right side. Even though we have good reason to believe the
work is the same, how can we check that it really works this way?
Exercise 3 may give you an idea for some experiments you try to
test this equation. However, let me just say that the more accurate
your measurements of distances and weights, the more important
the weight of the lever itself becomes.



21

We need to look at one more aspect of the effort force before we
move on. You may want to review the discussion of the horizontal
motion on page 13. We found there that we could ignore the force
to move the stone horizontally, that the work of moving stone to
the table top was due almost entirely to the force of lifting the stone
straight up.

Similarly, with our lever and fulcrum, only the force in the direc-
tion of the work distance contributes. Because of the geometry of
the lever and fulcrum, this translates directly into the force we ap-
ply through the effort distance. Only the part of the force we apply
to the lever straight down contributes significantly to the work of
lifting the 24 pound rock. This is why we use the vertical distances
rather than the curved arc lengths in the lever-work equation: the
vertical distances lie completely in the direction of the force needed
to lift the rock.

Lever and fulcrum machines are so useful and have been applied
in so many ways, that their configurations have been categorized
into classes*. The diagrams on pages 17 and 18 show what is known
as a class I lever®. The effort arm and load arm occupy different
portions of the lever on opposite sides of the fulcrum. In class
IT levers, the load and effort arms overlap, occupying a common
portion of the lever, with the point of load between the fulcrum
and point of effort:

The Wheelbarrow uses
a Class Il Lever

Effort Arm

Load Arm

Point of Effort

Point of Load

Fulcrum

“http:/ /en.wikipedia.org/wiki/Lever

5To be used as a lever and fulcrum simple machine, a lever is always paired with a
fulcrum. However, our human nature to collapse blocks of information into more compact
abstractions often causes us to abbreviate the phrase “lever and fulcrum” to the shorter,
single word “lever”.
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Class III levers have the point of effort positioned between
the fulcrum and the point of load. The most familiar example of a
class III lever is the elbow and bicep of the human arm:

The Elbow and Bicep
form a Class Il Lever

hand

point of load bicep

lower arm

upper arm
point of effort

fulcrum

In addition to these lever classifications, I'll give you one final
configuration that utilizes a pair of levers, connected with an axle
or freely rotating connection that functions as a fulcrum for both
levers. These simple machines are so handy, that not only have you
probably already used them, but you probably don’t even think
twice about how they work:

One thing all these different lever configurations have in com-
mon is that the same principles that we used to understand the
class I levers apply: the similarity of the load and effort triangles,
and the conservation of work. Exercises 5 and 6 give you a chance
to work with these other configurations.
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We can even use levers in a purely abstract way as described
in appendix A to help us better understand concepts, or even to
calculate the area of curved geometric shapes as Archimedes did
thousands of years ago®.

Finally, there is a specialized application that is so profound
that it is considered its own, distinct simple machine. We’'ll take
a look at this more closely in the next chapter, but first, try the
following exercises to test and improve your understanding of lever
and fulcrum systems.

6See Netz and Noel’s “ The Archimedes Codex: How a Medieval Prayer Book is Revealing
the True Genius of Antiquity’s Greatest Scientist” for this fascinating story. One of the re-
covered writings described is the method wherein Archimedes uses the leverage principle (see
the leverage equation on page 51) to calculate the area of a parabola section, foreshadowing
our modern conception of the Calculus.
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Exercises

The first two exercises ask you to write and work with some equa-
tions. If this sort of thing is new to you or you feel like you want
to know more about equations before trying this, see Appendix A
first.

1. Euclid’s Definition 10 in Book I of a right angle tells us that
the angle of any line is composed of two equal angles (like
the corner of a page) called right angles and Postulate 4 of
Book I tells us that all right angles are equal. If we assign
numeric measures to angles so that a right angle measures 90
degrees (90°), this tells us that the angle of a straight line is
180 degrees (180°). In the diagram of the lever and fulcrum
depicted on page 18, let £°AF B denote the measure of angle
AFB, £°BFC denote the measure of angle BFC, and £°C'F D
denote the measure of angle CFD.

(a) Write an equation for the sum of angle measures along
line AFC in terms of £°AFB, £°BFC, and £°AFC.

(b) Now, write an equation for the sum of angle measures
along line BFD in terms of {°BFC, £°CFD, and £°BFD.

(¢) Finally, use these two equations to show that {<°AFB =
L°CFD. |In essence, this is Euclid’s Proposition 15 of
Book I. These angles are commonly called vertical an-
gles. Angles BFC and AFD are also vertical angles.|

(d) Recreate the sketch of the load and effort triangles on
white paper and use a blue highlighter to color in the an-
gles AFB and FBC (angles of the equation of part (1a)).
Use a yellow highlighter to color in the angles BFC and
CFD (angles of the equation of part (1b)). Notice that
part (1c) is about showing that the portion of the sketch
with blue pigment is equal to the portion with yellow pig-
ment, by subtracting out the common in green.
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2. Euclid’s Proposition 32 of Book I argues that the sum of the in-
ternal angles of any triangle add up to two right angles (180°).
In the diagram of the lever and fulcrum depicted on page 18,
let £°’AFB, £°ABF, and £°BAF denote the measures of
the load triangle angles, and £°CFD, £°CDF, and £°DCF

denote the measures of the effort triangle angles.

(a) Write an equation for the sum of the load triangle angles.

(b) Write an equation for the sum of the effort triangle angles.

(c) Now combine the equations in parts (2a) and (2b) into

one equation by eliminating the 180°.

(d) Use result 1c above, substitute 90° for A ABF and {°C DFE,
and show that L\°BAF = £°DCF.

(e) Recreate the sketch of the load and effort triangles on
white paper. Use a blue highlighter to color the B and
D corners of the load and effort triangles. Use a yellow
highlighter to color the F corners of the load and effort
triangles. Part (2¢) is about showing the sum of left blue,
yellow, and white angles is equal to the sum of right blue,

yellow and white angles. Part (2d) is about showing that

since the blue angles are equal, and the yellow angles are

equal, then the white angles must also be equal.

3. Fill in the empty cells in the following table to satisfy the
lever-work equation:

Load x Work_ Distance = Effort x Effort_Distance

Load | Load | Work | Effort| Effort | Effort
Arm | Distance | Arm | Distance
36 Lbs 12 ft 3 ft 12 Lbs
20 Lbs | 4 1t 8 ft 2 ft
6 Lbs | 3 ft 1 ft 9 ft
0.5 1n 3 in 1in 6 Lbs
2/3 in 3 in 1in 6 Lbs
3 m O m 5 cm 6 N
5N 2 1m 1m 20 N
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4. Refer to our lever and fulcrum depicted on page 18. Assume

that the lever material has very little weight compared to the
24 pound rock.

(a) What could you place at the point of effort of the lever
to check that the amount of force required to lift the 24
pound rock is cut in half?

(b) What physical condition (position of the lever) signals the
verification of balanced forces in part (a)?

. Suppose that you have to move a ton (2000 pounds) of dirt

with a wheelbarrow. Furthermore, suppose that you can lift
(with your legs), hold up (with hands and arms), and move
about 100 pounds above and beyond your body weight. Fi-
nally, suppose that the center of the barrow (bucket) is 2 feet
from the center of the wheel, and that you grasp the handles
comfortably about 4 feet from the center of the wheel.

(a) About much dirt can you carry in one wheelbarrow load?

(b) About how many trips will you have to make to move the
dirt from the street (where it was delivered by the dump
truck) to the garden.?

. Suppose that you squeeze the handles of a typical scissors

(shown below) together with 6 pounds of force applied at point
E. What is the force applied at point A? At point B? At point
C? [Hint: use exercise 3.

L inches —>
0.5 inches
B

A

2 inches —=»

<—— 3 inches



Chapter 4

The Wheel and Axle

In this chapter we focus our attention on simple machines that bring
the infinitely symmetrical shape of the circle to our aid in moving
objects. To start, consider how a circular shape can be used to
reduce the friction of moving objects much as ancient Egyptians
are thought to have used logs to move the blocks of a pyramid:

OO000)

Using logs (cylinders) reduces the
friction of moving a heavy block.

Before we take a closer look, let’s introduce some terminology:

A circle is the set of points in a flat The cenfer of the circle is the single
surface (like this page) that are an point from which all the points of the
equal distance from some point circle have the same distance.

(called its center).
The circumference of a circle is the
length of its perimefer (the distance
around the circle).

The distance from the center to any
point on the circle is called its radius.
Sometimes we talk about a line from
the center to a point on the circle and
A line from a point on the circle, through the center, call such a line a radius of the circle.
to a point on the other side is called a diameter of

the circle. We also call the length of any of these

diameters, the diameter of the circle.

27



28 CHAPTER 4. THE WHEEL AND AXLE

Now consider what happens as we push the block to the right:

&t T Friction with block

| applies force

I
3
push block o .
1/2 rotation
L
| |

Friction with ground
applies force

end start

end start end

As we push the block, the friction between the top of the log and
the block cause a resistive force (to the left) on the block. The
top of the log feels this as a force (to the right) applied to the top
of the log. Similarly, the friction between the log and the ground
cause a resistive force (to the left) at the bottom of the log as the
log is pushed to the right from the friction at the top. These forces
on the top and bottom of the log in opposing directions cause it

to rotate about its center, rolling along both the ground and the
block.

We can reduce energy lost in friction by making the cylinders
and their alignment perfect as well as making the block and ground
more flat, smooth and hard. Suppose we reduce the friction so much
that we can ignore it, and yet we still do a large amount of work
in moving the block horizontally. Can you recall from chapter 2
where the energy is stored? In this case, the work is converted into
the kinetic energy of the motion, not only of the block, but also the
rotation of the logs.

However, even if we can keep everything properly aligned, one
substantial problem with this configuration is that the cylinders will
roll out from underneath the block: each half rotation causes the
cylinder to move back on the block by one half of its circumference.
In order to keep the circular shape (known as a wheel) in place
and correctly oriented to help move objects, we attach each wheel
to a shaft (known as an axle) that allows the wheel to be fixed in
place and yet rotate as needed. This reintroduces friction with the
rotation of the wheel, but keeps the wheels aligned, in place, and
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eliminates the need for the moving object to be flat.

We'll soon look more closely at friction, but, first, let’s take a
closer look at a simpler configuration of a wheel and axle ignoring
friction for the moment.

(e

[

As we turn the wheel (we could use a belt or gear teeth around
the circumference of the wheel, or just grab there with our hands
to turn it), the line winds around the axle and lifts the weight. The
question we’ll dig into further is: How does the wheel and azle help
us lift the weight? To answer this, we’ll focus our attention on a
slice of the configuration as follows:

Hopetully, you’ll be able to recognize this as our lever diagram
from page 18. In fact, a wheel and axle form a continuously rotating
lever! In this configuration, the center of the axle (and wheel) is
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the fulcrum, each radius of the axle is a load arm, and each radius
of the wheel is an effort arm.

From our earlier analysis of levers, we know that if the radius
of the wheel is four times the radius of the axle, we will only have
to use one quarter of the force required to lift the weight, but must
apply that force through four times the distance (the circumference
of the wheel as opposed to the circumference of the axle). In a
similar way, if we can apply four times the force required to turn
the axle, then the length of travel of a point on the outer edge of
the wheel (around the circumference) will be four times as far as
the motion of a point on the surface of the axle. It’s no wonder
that vehicles with wheels can move so fast!

Now, let’s take a closer look at pushing a cart or wagon and see
what happens with the axles attached to the cart:

Push

—

sh (from bracket) sh (from bracket)

friction {from ground) < friction (from ground) <

As we push the cart, it applies the force of our push to the axles
through the attachment points. The friction between the wheels
and the ground causes a resistive force to be applied to the wheels
at the point where they touch the ground. The two opposing forces,
one on the axle pushing forward, the other on the outer edge of the
wheel pushing back cause the wheel to rotate.

The main difference between rotating logs under a block, and
wheels and axles on a cart, is that the axles are held in place by a
bracket, a bearing!, or some other material that will touch the axle

LA bearing is an object whose purpose is to provide a surface to take on (without
yielding) the force of contact of some other object.
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as it rotates. This will introduce the resistive force of friction in a
direction that opposes motion of the axle?:

This concentrates the friction to the points of attachment for
the axles. We can reduce the friction at these isolated places with
various techniques that include making the surfaces smooth, hard,
and slippery. Here is a device that, in addition, utilizes the freely
rolling log idea, fixing balls around the axle with a special bracket
that allows the balls to rotate almost freely:

2Rather than draw a bunch of little arrows all along the circumference of the axle, I
just sort of joined them together into a bigger curved arrow. Most of the contact force and
friction will occur on the top half of the axle.
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However, even without any special devices or attention to re-
ducing friction (other than making sure the hole is big enough to
let the axle to rotate freely), the rotating lever configuration makes
the wheel and axle work. The multiplication of force due to a large
wheel radius compared to a small axle radius can easily overwhelm
a small frictional force resisting the rotation.

Before we end the chapter, let me mention that the continu-
ous circular motion of the wheel and axle is so useful that it has
spawned three different classes of simple machines. The first are
rope and pulley systems that we’ll take a closer look at in the next
chapter. The second are belt and pulley systems that link two
rotating pulleys together using a flexible connector and friction.
The third class locks rotating wheels (called gears) together with
interlocking teeth.

Now, here are some exercises for you to check your understand-
ing of the wheel and axle.
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Exercises

1. Consider the block and log diagrams on pages 27 and 28. How
many circumferences of a wheel does a block move when the
wheel rotates two complete revolutions?

2. For this exercise® you need a couple of different sized wheels
and some string.

(a) Loop the string once around the circumference of the first
wheel so that you have a length that represents the cir-
cumference of the wheel. Measure the circumference of
the wheel by measuring the string.

(b) Measure the diameter of the wheel (perhaps as its height
when placed in a rolling position on a table).

(¢c) Find the ratio between the circumference and the diame-
ter of the wheel:

(d) Repeat parts (a), (b), and (c) for the second wheel. Are
the values similar?

(e) What do you think would be the case for a third wheel
with a different diameter?

3. Consider friction brakes for a bicycle wheel having a 32 inch
diameter rim and a concentric (having the same center) 8
inch diameter disc.

(a) All other things being equal, how much more effective are
brakes on the rim of the wheel than brakes on the 8 inch
diameter disk?

(b) All other things being equal, how much more friction sur-
face area must the disc brakes have to be as effective as
the brakes on the rim?

(c) What is another way of making the disc brakes more ef-
fective without changing either their distance from the
center, or their friction surface area?

3Thanks to Leo Rice for this exercise.
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4. Suppose a water wheel, through the combination of kinetic
energy of water falling into and the resulting weight of water in
the buckets, can supply 50 pounds of force at a radius of 6 feet.
Suppose further that the friction of the wheel is negligible.

(a) Torque is a quantity, similar to work, that we define as
the product of two terms: 1) the radius of the circle of ro-
tation, and 2) the force at a point on the circle of rotation,
in the direction of the circumference of the circle:

Torque = Force x Radius

What is the torque supplied by the water wheel in foot-
pounds?

(b) Suppose the water wheel is used to lift weights at vari-
ous speeds by connecting the axle to different sized axles
with ropes to lift them. Fill in the missing values in the
following table for the maximum weight capable of being
lifted by the water wheel using axles of the various speci-

fied sizes.
Max Load Radius Torque
60 pounds
300 pounds
3 feet
1 foot
6 inches
3 inches

12 feet




Chapter 5

Rope and Pulley Systems

In this chapter we’ll take a look at a simple machine that is thought!
to be invented by Archimedes of Syracuse about 250 BC and is
still in use, especially on ships with sails, even today. This simple
machine is constructed out of a rope (or some similar strong, thin,
flexible, but non-stretchable substance) and special wheels called
pulleys that have grooves for the rope around their circumference.
The groves on a pulley keep the rope from slipping off. One possible
construction might look something like this:

N /N

o o n

[

'http://en.wikipedia.org/wiki/Block _and _tackle
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Notice the two groups of pulleys: one group attached to an
overhead immovable object (such as an arch, ceiling rafter, or ship
spar) and another group below, fastened together with a beam that
is bearing some load to be lifted. The basic idea is to pull the rope
in order to lift the object attached to the bottom set of pulleys.
We arrange the system so that we pull down on the rope to lift the
load, using our full body weight of force.

Before we can find out how much easier this rope and pulley
system makes lifting things, we need to address a practical issue
that hampers the proper operation of the construction shown above.

What we would like to have happen when we pull on the rope,
is for the beam connecting the pulleys to move up, staying parallel
to the ground. Can you guess what will really happen? Where
does the rope first start to pull on the lower beam? Can you find
the pulley that will first feel the lift from the rope? It is the one
on the left. It will start to move up before the one on the right in
a way that will minimize the lifting of the load:

Making the device as compact as possible eliminates this effect
as well as making it easier to transport, attach, and fit into place.
The pulleys are collapsed onto two axles, one at the top, and one
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at the bottom, yielding the arrangement given to us by Archimedes
that we call a block and tackle shown below (the left view shows
pulley edges, the right view shows pulley circumferences):

The block and tackle allows uniform lifting of the axle and uni-
form shortening of the rope segments connecting the upper pulleys
to the lower pulleys. In order to more easily visualize and under-
stand how this simple machine helps us work, we’ll use the first
diagram where the pulleys are separated, even though in practice
they’ll be configured into the block and tackle arrangement.

Let’s start by considering lifting a 24-pound object up one foot.
We recall from chapter 2 the work equation:

Work = Force x Distance

If we plug in 24 pounds for Force and 1 foot for Distance we end
up with 24 foot-pounds for the amount of Work. Now, let’s see how
this works with a pair of pulleys above and a pair below:
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PR

1 Foot

{24 Poundsf

In keeping with the lever terminology, we’ll call the line that we
pull the effort line, and the lines that run from pulley to pulley (or
pulley to fixed attachment) load lines. In the case shown above, we
have four load lines. Using this configuration to lift the 24 pound
weight up 1 foot, we can see that all of the load lines must contract
by approximately? one foot. This means that we must pull the
effort line approximately 4 feet.

We now assume that the pulley and axle have minimal friction
and invoke our work conservation principle to reason that the work
of pulling the effort line is the same as the work of lifting the load.
Lifting the 24 pound weight by 1 foot (ignoring the little friction
in each pulley) is 24 foot-pounds. We also know the distance we
must pull the effort line is 4 feet. Plugging these values into the
work equation

24 foot-pounds = Force X 4 feet

we can see that the force required is only 6 pounds. In other words,
the rope and pulley system reduced the force required to lift the

2The more the upper pulleys are directly over the lower ones, as in a block and tackle,
the closer to one foot the rope segments must move.
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object by a factor of 4. Furthermore, we can see that regardless of
the object weight, the same reduction factor of 4 will apply, because
there are exactly 4 load lines over which the effort is evenly spread,
and this increases the distance over which the reduced force must
be applied.

As with the other simple machines, we can see that when the
work remains the same, the force reduction and distance magnifi-
cation are linked as a consequence of the work equation:

Work = Force x Distance

When we keep Work constant and reduce F'orce by some factor,
then Distance must increase by that same factor to keep Work
constant.

This all assumes that we have ideal pulleys, that there is mini-
mal friction between each pulley and its axle. Recall our discussion
of friction for the wheel and axle in chapter 4. However, how would
we have to modify the work equation if the friction becomes signif-
icant? For more on this try exercise 8.

Before you dig into the exercises, let me point out the advantage
of using even just a single overhead pulley. Even though there is
only one load line and one effort line, with this configuration you
can more easily lift your body weight weight worth of load. Either
grip the line and pull down with all your body weight, or tie a loop
in the effort line a foot or two off the ground and stand in it. For
an added twist, see exercise 7.



40 CHAPTER 5. ROPE AND PULLEY SYSTEMS

Exercises

1. Suppose you weigh 80 pounds, and you have a 4-load-line block
and tackle attached to a sturdy beam in your garage. What
is the most you can lift using only your own weight?

2. Draw a rope and pulley system with 2 load lines.
3. Draw a system with the most load lines using 3 pulleys.
4. Draw a pulley and rope system with 5 load lines.

5. Assuming downward effort, does a rope and pulley system with
an even number of load lines anchor above or below?

6. How many pulleys are necessary for a system with n load lines?

7. Suppose you weigh 70 pounds, that you have a 4-load-line
block and tackle attached to a sturdy beam in your garage.
You need to lift a 320 pound object. How much weight do you
have to put in your backpack to get the job done?

8. Suppose you don’t have any pulleys, but do have: a rope, the
object you want to lift has a smooth, sturdy, axle-like handle,
and there is a smooth, sturdy, axle-like bar overhead you can
use to lift the object. Denote the weight of the object as F
and the distance you need to lift it as d.

(a) If you rig a 4-load-line block and tackle (without the pul-
leys, call each place you’d want a pulley a friction-point),
how much weight will each friction-point feel?

(b) Assume that the friction between the rope and axle is
proportional to (say one tenth of) the weight felt. How
much work is consumed by the friction at the friction-
point closest to the rope anchor? The second closest?
The third closest? The remaining one?

(¢) What is the total work consumed by all the friction points?

(d) Give an expression using F', d, and the friction coefficient
¢ = 1/10 for the total work required to lift the object.



Appendix A

Simple Equations

Just as concise notes focus our attention and collapse a complicated
subject into a comprehensible group of concepts, so do equations
help us understand and reason about relationships. Think about
how the work equation helps us understand the relationship be-
tween work, force, and distance. Embedded in the equation is not
only our definition of work, but also the restriction: that to keep
work constant, a reduction in force is necessarily accompanied by
an increase in distance over which it is applied.

In this appendix we’ll follow in Archimedes’ footsteps and use
the level in a purely abstract way to further our understanding of
equations. Hopefully, this will help visualize what equations mean
and how to work with them. Specifically, we’ll explore how a true
equation is like a special kind of lever, a beam balance that is
perfectly level (horizontal):

7 X

6

X+ X = T+ 1+ 1+ 1+ 1+1
O] esssee

| |

41
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A beam balance has the left and right arm of the same length
so that weights on each side are equal when the beam is horizontal
or level. The horizontal or level position of the balance corresponds
to truth of the equation. If the beam is horizontal, the weights are
equal and the equation is true. The weight on the left hand side
of the balance corresponds to the numeric value on the left hand
side (LHS) of the equation, the weight on the right corresponds to
the numeric value on the right hand side (RHS) of the equation.
In the case shown above, the boxes on the left hand side represent
the variable, or unknown quantity, . The beads on the right hand
side represent the integer 6.

Let’s explore this a bit further. We could, for instance, add one
box to each side and maintain the balance. This would correspond
to the equation: 3x = 2+6. (In this appendix, I'll often write prod-
ucts without using an explicit multiplication sign, or sometimes as
a dot, to avoid confusion with the variable z.)

Loy - x &
Lo -
g ZX - smssee
l 3X = X+6 |

In principle we could add any number of boxes, say n of them,
to each side and maintain the balance: 2x + nx = nx + 6. This
corresponds to a principle that goes back more than 2000 years to
Euclid. He captured it as Common Notion 2 in Book I of The
Elements that can be translated as': “If equals be added to equals,
the wholes are equal.”

1See Book I Common Notion 2 of Heath’s volume 1 of “Euclid: The Thirteen Books
of the Elements.” The common notions are general principles used freely throughout the
proofs (sequences of justifications for the truth) of the propositions.
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In a similar way, we could add equal numbers (beads), say 3, to
each side to get: 2z +3 = 9:

L3 3
u%gZx = 6 ,i,,
e 5 |

X+ 3

Or subtract equal amounts from each side to maintain the bal-
ance. Am [ talking about the equation (2’s and numbers), the
beam balance (boxes and beads), or both? Does it matter? Per-
haps our analogy breaks down when we try to take away more than
is present on the balance to end up with negative weight, but the
principle still holds for an equation.

Alternatively, when starting from a balanced state, we should
be able to double both the LHS and RHS and maintain the balance.
This corresponds to the equation: 2(2z) = 2(6), which we can write
as: dor = 12:

|:|||:| 2)( 6
uﬁ: /X 6
Ly = 12

l
T

However, in principle, we could triple, quadruple, or, more gen-
erally, multiply by n both the LHS and RHS and maintain the
balance: n(2z) = nb.
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Similarly, we can divide each side in half, leaving one half on
each side and maintain the balance. This corresponds to the equa-
tion: = = 3. Hopetully, you can begin to see how useful these
operations are for solving simple equations.

Once again our analogy causes some difficulty when generalizing
division of both sides by any number, where in the case of the
balance we think in terms of whole objects, but again it remains
true for equations: 2z/n = 6/n as long as n is not zero.

We can even combine the multiplication (by n) and division (by
non-zero d) into multiplication on both sides by one number, the
fraction n/d:

n n
“(27) = —
20) = 46

Let’s summarize all these operations that maintain the truth of
an equation with the following symbolic rules by saying that if we
have some equation:

LHS =RHS  forexample 2x =26

then for any number ¢, whether it is positive, negative, integer,
fractional, or decimal (including decimal numbers that cannot be
written as fractions), the following are also true:

LHS +c=RHS+c¢  forexample 2x+4=6+14

LHS —c=RHS —c¢ 2r—6=6—-06
c¢(LHS)=c(RHS) 5(2x) =5-6
and for non-zero c:
LHS RHS 2z 6
= for example — ==
c c 2 2
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Example 1: A Word Problem

Our first example goes like this: “Kate is two years older than her
sister Madeline and three years older than her brother Doug. All
together, their ages add up to 49. How old is Kate?”

To begin, we need to write this down symbolically. We’ll choose
our variable x to be Kate’s age in years. Then Madeline’s age will be
x-2 and Doug’s age will be x-3. We can write down the information
given to us in the following equation:

r+(x—2)+(x—3)=49

We'll start by collecting the variables on the LHS, as well as the
numbers. We have three x’s altogether, and we are taking away
five altogether, so we have:

d3r—5 =49

Our general strategy will be to perform operations on the equa-
tion until we end up with z all by itself on the LHS giving us the
answer. Our next step will be to add 5 to each side of the equation,
and then we’ll dived both sides by 3 to get the answer:

3r—5 = 49
3r = b4
r = 18

Finally, we’ll check our answer by substituting the values back into
our original equation:

18+16+15 =7= 49
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Example 2: Area of Triangles
Let’s examine the area of triangles using what we know about rect-

angles. We'll start by recalling that the area of an 8 by 4 rectangle
is 8 - 4 = 32 squares (units of area):

In a similar way, any rectangle with sides having whole-number
lengths n and m will have the area: nm (remember, this means n
times m). We can extend this same area rule to rectangles with
sides of any positive lengths b and A using the same expression: bh.
Let’s write this as the equation: arear; = bh.

D C
h
A b B

Now if we can agree that drawing a diagonal across a rectangle
splits it into two equal? triangles, then we we’ll have the area of the
rectangle being twice the area of the triangle:

2In modern language, we say they are congruent. Euclid Book I proposition 4 tells us
these triangles are equal since: 1) line segment AB is congruent to CD, 2) BC is congruent to
DA, and 3) angle ABC is the same square angle as CDA. See Heath’s “Euclid: The Thirteen
Books of The Elements.” This is commonly known as the SAS rule, and even though
Euclid includes it as a proposition with an argument for its truth, it really is a postulate or
axiom, something that we simply accept as true.
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arear; = 2areap

However, we also know that the area of the rectangle is: bh.
We now use a principle whose truth is beyond question in both
algebra and geometry, Euclid’s® Common Notion 1: Things which
are equal to the same thing are also equal to one another. This
means that we can substitute the product bh in place of the area
of the rectangle areaq:

bh = 2area,

We can now divide both sides of this equation by 2 (that’s the
same as multiplying by 1/2) to find the area of a triangle with a
square corner at the base, base length b, and height h at the square
corner as:

1
area, = Ebh

Square corners are special in geometry. Euclid* called them
right angles, defined so that adding two of them makes a straight
line, and assumed each right angle is equal to any other. We call
a triangle that has a right angle as a corner a right triangle, and
just as a right angle is special, so is a right triangle.

So, how do we find the area of a triangle that doesn’t have a
square corner? Just as we used rectangular area to figure out the
area of a right triangle, we’ll use what we know (area of a right
triangle) to figure out what we don’t (area of a triangle without a
square corner at the base). Let’s start with the case of a triangle
with the peak over the base. We'll just draw a vertical line down
from the peak to the base to end up with two right triangles:

3See Book I Common Notion 1 of Heath’s volume 1 of “Euclid: The Thirteen Books of
The Elements.”

4See Book I Definition 10 and Postulate 4 of Heath’s volume 1 of “Euclid: The Thirteen
Books of The Elements.”
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t beft bRight J

b

First we’ll express the area of the original triangle as the sum of
the area for two right triangles, then we’ll substitute the expressions
for these (since we know how to calculate them), and then we’ll
regroup:

area, = arear + arear

1 1
= —brh+ =brh

5L + 5UR

1

1 1
= i(waLbR)h = §bh

We can factor out 1/2 and h and group the addition of by + bg for
the same reasons that 7-1047-3 =7-13.

For the remaining case of a triangle with the peak not over the
base, let’s still draw a line down vertically to the point where it
meets the extension of the triangle base.
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For our calculation this time, we’ll calculate the area of triangle
ABC as the area of triangle ADC minus the area of triangle BDC:

areapnApc — areapAapc — areanppc

1 1 1

%(b Cbp)h = %bLh

We begin by first substituting the expressions for the area of the
right triangles. The next steps are to again factor out both 1/2 and
h and group the subtraction of by from b. Again, we can do this
for the same reasons that 5-20 —5-2 =5-18. Next, since b — b
is just by, we substitute by, for b — b to get our result.

We have found that, just as for right triangles, each triangle
without a right angle (peak over the base, peak outside base), the
area is also one half of the base times the height. This also helps
us understand the meaning of the height of a triangle. It is the
distance that the peak of the triangle rises above the base along a
square corner (or right angle). In the diagram below, the 5 triangles
are all on the same base and have the same height (peaks on the
dotted line) and so have equal areas®:

Now, try your hand at the following exercises to practice and
check that you can work with equations. If you are not sure of
your answer, don’t let it go, be sure to check with someone who
will know and can help you understand it.

SHeath’s translation of Euclid’s proposition 37 of Book I is: Triangles which are on the
same base and in the same parallels are equal to one another. Our intuitive approach to
understanding this result is algebraic whereas the beauty of Euclid’s approach is in the self-
contained system of Euclidean Geometry that derives results from definitions, postulates,
common notions, and previously obtained results using deductive reasoning, a system that
has been a successful model for mathematics and formal reasoning for 2300 years.
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Exercises
See also exercises 1 and 2 on page 23 of Chapter 3.

1. Solve the following equations for x (and check your answers):

2. Kate is two years older than her sister Madeline and four years
older than her brother Doug. All together, their ages add up
to twice Kate’s. How old is Kate?

3. This exercise explores an equations for scale models. Suppose
that you know the dimensions of an object such as a bridge
(perhaps from architectural drawings), and want to make a
model of it that is smaller, so that each piece of the model is
smaller than in the real bridge by the same factor. Let’s use
the following equation where the size of a piece r in the real
bridge is multiplied by the scale factor f to give the size of the
piece m in the model:

r-f=m

(a) Suppose that the real bridge is 500 meters long, and that
you want to build the model so that it is exactly 1 meter
long. Substitute the numbers into the scaling equation
and solve for the scale factor f.

(b) Find out how big a model support should be if that sup-
port is 25 meters long in the real bridge, by substituting
the scale factor you found in part (a) into the scaling equa-
tion for f, substituting the real length 25 meters in for r,
and solving for m.
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(c) Convert the size of the model piece your found in part (b)
from meters to centimeters by multiplying it by 100.

4. This exercise asks you to convert the lever-work equation of
Chapter 3 page 20:

Load - Work_ Distance = Effort - Effort_ Distance

into a (perhaps) more usable form by using the scaling equa-
tions:

Work_ Distance - Scale_ Factor = Effort_Distance
Load_ Arm - Scale_ Factor = Effort_Arm

(a) First, divide the “distance” scaling equation by Work Distance
to find the first expression for the Scale_ Factor.

(b) Second, divide the “arm” scaling equation by Load_ Arm
to find the second expression for the Scale_ Factor.

(¢) Next, divide both sides of the lever-work equation by
Work_ Distance and group the distance terms into a frac-
tion on right hand side.

(d) Now, recognize the fraction on the right hand side of
the equation you get in (c¢) as the first expression for
the Scale Factor you found in part(a), and substitute in
its place the second expression for the Scale Factor you
found in part (b).

(e) Finally, multiply the equation you find in part (d) by
Load_ Arm to end up with the following leverage equa-
tion:

Load - Load_ Arm = Effort - Effort_Arm

(f) Suppose you have a 20 pound bag of grass seed, placed on
a teeter-totter 6 feet from the pivot point, and that you
balance the teeter-totter when you stand 1 and 1/4 feet
from the pivot point. How much do you weigh?



52

APPENDIX A. SIMPLE EQUATIONS



Appendix B

Vectors

In this appendix, we examine more thoroughly the algebra of vec-
tors, including how adding vectors in a line reduces to the algebra
of numbers (scalars). Our final stop will be the full vector algebra
formulation of the work equation.

We've already talked in chapter 1 on page 3 about how forces
have both a magnitude (amount of push or pull) and a direction.
How they are conveniently represented by arrows, and how these
arrows form an algebraic system of what are known in mathematics
and physics as vectors. Sometimes, instead of arrows, people refer
to the representations as directed line segments. In this appendix,
we’ll take a closer look at this algebraic system of vectors, starting
with a different example, one that may seem more natural than
forces.

You've already had a couple of hints about this more familiar
system of vectors. In fact, you may already have guessed what it
is. Recall from chapter 1 when we were talking about two forces
canceling each other out and adding up to zero. Now think about
the part of chapter 2, lifting a stone twice as far, which might
suggest adding the lift distances. What am I talking about? I am
talking about straight-line displacements: a motion, or movement,
some distance along a straight line. We can even dispense with the
“straight line” restriction if we are willing to consider only the start

23
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and end points of the motion (though, in more complicated cases,
the intermediate path can make a difference).

Each displacement can be represented as a combination of mag-
nitude or size (the distance from the start to end point) and a di-
rection (from the start point to the end point). This combination
of magnitude and direction of displacements can be represented by
an arrow with the tail at the start point and the tip at the end
point.

N 7 feet
U 2 feet

E 4 feet

S 3 feet

There are six vectors represented in the diagram above. Four of
them are labeled with their direction' and length and the remaining
2 vectors are labeled A and B. The diagram is meant to depict
three dimensional objects. To understand the diagram, we imagine
that north is straight ahead into the page, so the displacement
vector N 7 feet is 7 feet into the page (in the direction of the page
in front of us). We imagine the vector S 3 feet points out of the
page (from the page towards us) 3 feet, the vectors A and B point
out of the page to our right, and the vectors U 2 feet and E 4 feet
lie in the plane of the page.

'Let’s use the first letter of the directions : Up, Down, North, South, East, and
West.
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With displacements as our intuitive guide to vectors, let’s dive
right in and talk about algebraic operations involving vectors, start-
ing with scaling.

Scaling Vectors

The concept of scaling an object is, essentially, to change its size
with all parts either growing or shrinking by the same amount so
that the shape stays the same. We associate this concept with the
mathematical operation of multiplication by a number called the
scale factor, or scalar, that represents this shrinking or grow-
ing amount. For example, consider making the displacement vec-
tor S 3 feet twice as long. This would become a displacement of
S 6 feet. We can write this as:

2(S 3 feet) = S 6 feet

In a similar way we could scale the vector A by a (scale) factor
of 2 writing the result as: 2A. Or we could make it half as long
via any one of: 1/2A, 0.5A, or A /2. Moreover, we can scale any
of the vectors, say B, by any scalar c as: cB. Notice that scaling a
vector changes its length, but not its direction (depending on how
you think about opposite directions). Let’s take a closer look at
this by focusing on the NS line, ignoring measurement units like
feet or meters for the time being, with the vector N 1 pointing to
the right:

-2 -1 0 1 2 3 4
<« ——>>—>> >

S 1 0 N 1 N 2 N &

-1IN 1) O(N 1) 1N 1) 2N 1) LN

Notice that scaling by 2 gives N 2, scaling by 4 gives N 4, and
scaling by 0 gives a vector with 0 length. Notice that this last
vector has no length. In this sense it also has no direction. On the
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other hand, it can have any direction we care to choose, and since
there is no length, it doesn’t really matter. For these reasons, let’s
denote this zero vector using just its length, 0. To distinguish
the zero vector from a scalar (we haven’t defined multiplication of
two vectors yet, and when we do, it will be different from scaling),
we’ll denote the zero vector in boldface as: 0.

Now, this last scaling result will be true for any of our force or
displacement vectors. Scaling any of these vectors, V, by zero will
give the zero vector:

0oV =0

Next, notice that scaling N 1 by 2 gives N 2, and that scaling
N 2 by 2 gives N 4. We can write this as: 2(2(N 1)) = 2(N 2) =
N 4 = 4(N 1). This is another result that will hold for any of the
force and displacement vectors, V, and any scalars a and b:

a(b(V)) = (ab)V

What about scaling by negative numbers? If we think of mul-
tiplying by a negative number as giving a scaled vector in the op-
posite direction, changing a north vector into a south vector, then
we will keep the scaled vectors on the line so that integer multiples
of N 1 correspond to integers on the number line. In terms of our
vectors, we'll have: —1(IN'1) = S 1. In a similar way, we can think
of multiplying the vector S 1 by negative 1 giving the vector in the
opposite direction: —1(S 1) = N 1.

This gives us a geometric interpretation of multiplying by minus
one as changing to the opposite direction. Combining these last two
equations we have: —1(—=1(N1)) = —1(S1) = N1 = I(N1).
This lets us interpret the equation —1 x —1 = 1 as: changing to
the opposite direction twice is the same as not changing at all.

We'll soon see that this interpretation will continue to make
sense when adding vectors, which is our next topic.
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Adding Vectors

The rule for adding vectors is essentially the same as combining dis-
placements when you think about it in the following manner. To
help us visualize, let’s be specific and consider the displacements
N 3 feet and E 4 feet. How should we combine these two displace-
ments? Hopefully, it will seem natural to move north 3 feet and
then move east 4 feet:

N 3

A N3+EL

E 4

The result of this combined displacement is just the displace-
ment from our starting point, the origin, to the ending point. We
can think of moving the tail of the second displacement to the tip
of the first displacement. This is the rule we use to add two vectors
A and B: the sum of the vectors A and B is from the tail of A
to the tip of B when B’s tail is moved to the tip of A.:

B

B+A
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What if we had moved the tail of vector A to the tip of vector B.
The resulting sum is the same: A+B = B+ A. Why” The reason
is that the resulting sum vector is the diagonal of the parallelogram
formed from A and B regardless of whether we move along A or
B first. In fact, the rule for adding vectors is often known as the
parallelogram rule or parallelogram law of vector addition.
Furthermore, this result will be true for any of our displacement
vectors, U and V (force vectors too, but let’s not try to combine
forces and displacements just yet):

U+V=V+U

Now let’s think about what this means if the vectors lie on
the same line. In this case the parallelogram collapses into a line
segment. The vectors being added as well as the resulting sum
vector lie on the line, and as long as we keep that line in mind,
the algebra of these vectors reduces to the algebra of their signed
lengths. We pick one direction of the line as positive, like we did
with N 1 for the scaling example, and then assign lengths in the
other direction as negative, the length of S 1 being -1:

Length 2 Length 5
C

C+D
A A+B B
Length 2 Length 1 Length 3

Signed Length -2 Signed Length 1 Signed Length 3 D
Length 3

Finally, since you now know how to scale and add vectors, you
also know how to subtract them. For example, if you want to know
about A — B, just think of it as A + (—B) where, of course, —B is
just B scaled by -1, that is —1B, which we saw above is B in the
opposite direction.

Dot Product

To get to our final destination for this appendix, we need one last
algebraic operation that combines two vectors to give a scalar, a
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sort of multiplication of vectors. This operation is typically called
the dot product of vectors and takes its name from the notation
with which it is usually written. Given two vectors, A and B
their dot product is written as A e B, and we can use the arrow
representations to think of it geometrically as follows:

A<B = (this "signed length) x
(length of A)

A

First, project the vector B at a right angle onto the line of
vector A (so that the line from the tip of B to the line of A makes
a square corner). Then multiply this signed length (the direction of
A is positive), by the length of A. For example, the value of A eB
in the diagram above is positive, because the part of B projected
onto A is in the direction of A. The value of A e (—B) is negative
because the part of —B projected onto A is in the opposite direction
of A and so has a negative signed length (with respect to A):

A«(-B) = (length of A) x
(this signed length)
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This brings us close to our final destination. The essential ob-
servation is that the dot product captures exactly the properties of
work that we discovered back in Chapter 2. First, it captures the
multiplicative nature of the two vectors it combines. For instance,
if the vector A is twice, half, or five times as big, then so is the
product A e B. Similarly for the vector B. Just what we need
for doubling the work by doubling the lift distance or the object
weight.

Second, notice that the dot product throws away the part of the
vector B that is not in the direction of (the line of) A. Think of the
vector B as being formed as the sum of a vector By in the line of
A and a vector B at a right angle to A. The dot product keeps
only the part By in the line of A. This is why the dot product is
known more functionally as the inner product? of the vectors A
and B.

B:BJ'_“B"

A<B

(this "signed length) x
(length of A)

A°BII A

Now, recall how we disregarded the horizontal motions (dis-
placements) of objects being lifted because they did not feel the
weight of the vertical force of gravity. Using the above diagram to

2You may imagine a multiplication of the vectors A and B composed from A and the
part of B at a right angle to A that is called the outer product of A and B. Inter-
estingly, this product is often denoted with a wedge, A A B, and is also frequently called
the wedge product. It is also known as the exterior product and leads to fantastically
interesting and productive areas of mathematics known as exterior (or Grassmann) algebra
and differential forms. However, perhaps even more interesting, powerful, and productive
is the combination of the inner and exterior product known as the geometric product:
AB = A ¢B + A AB. Luckily, there is a great book by David Hestenes titled New Foun-
dations for Classical Mechanics that you can consult for more on this.
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represent this would have the vertical direction Up in the direction
of A, with A representing the force of our lift (the negative of the
gravitational force on the object), B representing the resulting dis-
placement of the object, B representing the vertical displacement,
and B representing the horizontal displacement.

Finally, notice how the dot product results in a scalar: a number
having no preferred direction. With all of this in mind we can now
see that we can capture these properties of work in a vector equation
that incorporates our previous work equation into the following
vector work equation:

W =FeD

where W is the (scalar) work done by applying the force vector F
through the displacement vector D.
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Exercises

Having introduced the geometric concepts associated with vectors,
[ feel obligated to offer these exercises to explain how to calculate
with them. Having said that, I would not be offended if you stop
here and come back to this only when you feel either the need for
a challenge, or a burning desire to know how this all works.

Calculations with vectors are often more straight-forward when
the vectors are specified by their Cartesian coordinates® (rather
than with a direction and length). This done by listing the co-
ordinates of the point at the tip of the arrow. For instance, let’s
restrict our attention to the vectors that lie in the NS-EW plane
and specify each vector by a pair [z, y| of coordinates of the tip of
the vector. Let’s let x be the east coordinate, and y be the north
coordinate. Then we have the following Cartesian coordinates for
the vectors from the NS-EW plane of our diagram on page 54:

[0,7]

A N 7 feet

6__

R
I I I S

S 3 feet A
[0,-3] | [4,-3]

3Cartesian coordinates are named after a fellow named René Descartes who, like Isaac
Newton, lived hundreds of years ago. He thought that doing geometry ought to be easier than
the Greek method espoused by Euclid, and went on to invent analytic geometry. For more
on this, or just for an intriguing story, check out Amir Aczel’s Descartes’s Secret Notebook:
A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe.
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Let’s take a look at how scaling a vector V = [z, y] by the factor
c affects the coordinates:

Cy

Notice that, due to the similarity of triangle 0:V:x to triangle

0:¢V:cx (and 0:V:y to0:c¢V:cy), changing the length of V to ¢V
changes z to cx (and y to cy):

cV = clz,y] = [cx, cy]

1. Fill in the entries of the following table, then plot the vectors
on a sheet of graph paper and label them:

A 2V 0.5V -3V
[, ‘ y] 2%, ‘ 2y] [1]0.5x, ‘ 0.5y] | [-3x, ‘ -3y]
0 1
0 -3
4 0
4 -3
-2 0
-2 -2
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Now, let’s take a look at adding the vectors V. = [z,y] and
U = |w, #] using Cartesian coordinates:

y+z N V+U

y / v
v

w X X+w

Notice that, as we move the vector U to the tip of the vector
V to form the sum V + U, we add w to x and z to y:

V+U=z,y]+[w,z] =[z+wy+ 2

2. Fill in the entries of the following table. On a sheet of graph
paper: plot and label the vectors, and sketch the parallelo-

grams:
\% U V+U
[, ‘ y] w, ‘ z] | [x+w, ‘ y 7]
0 1 2 0
0 -3 -2 2
4 0 -1 1
4 -3 -2 -2
-2 0 1 0
-2 -2 -1 -1
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Finally, in order to figure out how to calculate the dot product,
we’ll need to know that for any vectors V, U, and T, and any
scalar ¢ the dot product has the following properties:

(dU) e (cV) = dc(UeV)
Te(V+U) = TeV+TeU
VeU = UeV

Once we know these, we’ll be able to figure out (see exercise 6
below) that for vectors V = [z, y] and U = [w, z|:

VelU=[z,y]ew,z] =2w+yz

3. Fill in the following table, and, on a sheet of graph paper:
plot and label the vectors, project the vector U onto the line
of vector V (use the corner of a separate sheet for the right
angle), and then (use a separate piece of graph paper like
a ruler to) measure the projected length, the length of V|
multiply them together, and compare results:

\ U VeU
o, [yl [ [w, [ 4] Tw + yz
0| 1] 2|2
1| 3] 3|1
4 oo |1
4 [ 3]0 |1
20 | 2] 2
2 [ 2] 22

4. Notice that according to our definition of the dot product, the
dot product of a vector with itself is just the length of the
vector squared, since the length of the projection of a vector
onto itself is the whole length of the vector we start with. This
allows us to calculate the length of a vector V (a common
notation for this is |[V]) as the square root of the dot product
of the vector with itself:

V| = Length(V) = VvV eV
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Fill in the entries of the following table:

Vv VeV vVVeV
ERN 2’ 4y Va?+y?
0 1
1 -3
4 0
4 -3
1 1
-5 12
a b

5. This exercise explores the use of the dot product to measure

angles between vectors. Suppose we are given two non-zero
vectors V and U. Let’s write £ VU to represent the angle be-
tween them. One difficulty we run into is that the dot product
incorporates the length of the vectors into the product, even
though the angle between vectors does not change with their
length To avoid this problem, we introduce the unit vectors
V and U in the direction of V and U using the length
V| and |U]| of the vectors from exercise 4 as follows:

~ A\Y A U 1

MR M e v
We have scaled each of the vectors so that it has unit length
by dividing by its length. For example, we make a 2-unit
vector half as big. We can now generate a measure for L VU
using \7, fJ, and the the dot product as follows. For historical
reasons we call this particular measure the cosine of the
angle between the vectors V and U:

1
ViU

cosine(£dVU) =V e U = VeU

Fill in the entries of the following table, and, on a sheet of
graph paper, plot and label the vectors. Notice what happens
to the cosine value as the angle £ VU goes once around a circle
in the order listed in the table:
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\'% VVeV U VUeU | VeU | Cosine(£VU)
X, vl [ Va2+y2 | |w, 2l | Vw24 2? | sw+yz %
1 0 1 0
1 0 12 D
1 0 4 3
1 0 1 1
1 0 3 4
1 0 D 12
1 0 0 1
1 0 -1 1
1 0 -1
1 0 0 -1

6. This exercise leads us from geometry to our Cartesian coordi-

nate formula for the dot product.

(a) Convince yourself that (dU) e (¢V) = dc(U e V) for var-

ious ¢, d, V, and U by using the scaling diagram on page
63. Think of the horizontal line as the line of U with
the length of U being u, and how scaling U by d changes
the length from w to du. Notice how U ¢ V = zu and
(dU) ¢V = zdu. Now notice how scaling V by ¢ changes
the last one to (dU) e (¢V) = cxdu = dcxu = de(U o V).,

(b) Convince yourself that Ve (U+T) = VeU + VeT

for various V, U, and T by using the addition diagram
on page 64. Think of the horizontal line as the line of T
with the length of T being ¢, and how the dot product on
the left hand side is (z + w)t and on the right hand side
the sum of the dot products is xt + wt.

(¢) Convince yourself that Ve U = U e V for various V and

U as follows. Think of V ¢ U and U e V| using part (a)
as:

U = ([VIV)(|U|0) = [V][U|(
oV = (JU[U) e ([VIV) = [U[|V[

)

VvV VeU
U ﬂoV)
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Since the lengths are just scalars, |[V||U| = |U||V|. Now,
convince yourself that the following diagrams show that
VeU=UeV for various V and U:

L

<>

‘(

You'll probably need Euclid’s Book I Proposition 26 that
says triangles with two angles and a side equal, are equal*
(for the case on the right, you need to know Book I Propo-

sition 15 about vertical angles being equal (or see Chapter
3 Exercise 1)).

(d) Next, introduce the vectors i = [1,0] and j = [0, 1] and
notice that since they form a right angle, each projects
a length of 0 onto each other, so that: iej =0 = jei.
Furthermore, since each is of unit length and the dot prod-
uct of a vector with itself is the length squared, we have:
iei=1=jej.

(e) Finally, notice that, due to the way scaling and vector
addition work, we can write the vectors V. = [z, y| and
U = [w, 2] as:

V=zit+yj and U =wi+ zj

4This is more commonly known as the AAS rule, and unlike the SAS rule, can be proven
by staying strictly within the system of Euclidean geometry.
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We can now evaluate the dot product as follows:

VeU = (zi+yj)e (wi+ zj)

(by 60) = (zi+yj)e (wi)+ (2i+yj) e ())

(by 6c) = (wi) e (zi+yj) + (2)) o (2i + yj)

(by 6b) = (wi) e (2i) + (wi) o (yj) + (2j) @ (zi) + (z]) ® (vj)
(by 6a) = wx(iei)+wy(iej)+ zz(jei)+ zy(jej)

Now verify that when you plug in the 0’s and 1’s from
part (d) you get the result wx + zy which is the same as

TW + Y=z.
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erful and expressive language for physics. Written by a vision-
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the mathematics in a descriptive, intuitive, and insightful way,
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and celestial mechanics) and relativistic mechanics.
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and illustrations make it a fun and accessible introduction to
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is Archimedes use of the lever to obtain the area contained
under a parabola, and how his reasoning recommends a more
(perhaps intuitive) geometric approach to integration.

Ward, Michael Introduction to Rocket Science: How high will it
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lished by Michael Ward, 2010.

[ can’t think of a more exciting way to come to grips with
forces, mass, acceleration, velocity, and Newton’s second law
of motion (F' = ma) than by figuring out how high your model
rocket will go. This pamphlet gets you started with the calcu-
lations and then helps you refine them to include: corrections
for air resistance (drag), non-constant thrust profiles, decreas-
ing mass due to spent propellant, and even multiple stages.















Forces, Work, and Simple Machines

Simple machines have been helping us work since before
we could write. They help us move things more easily and
achieve more than we could without them. They help us
lift boulders, pry things apart, stack them together, trans-
port objects and ourselves.

In order to understand a few of these simple machines and
how they work we’ll use some basic math and physics (in-
troduced as we need it).

My hope is that once you know what these simple machines
are, and how they work, you’ll be able to see them at work
in the world around you and put them to work for yourself.
I also hope that once you see how easy it is, you'll start to
apply the same principles we use to understand these sim-
ple machines to other machines and even more complicated
and subtle systems.



