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Preface

[ can’t think of a more exciting way to come to grips with forces,
mass, acceleration, velocity, and Newton’s second law of motion
(F' = ma) than by building a model rocket, figuring out how high
it will go with different engines, delays, and payloads, and then
shooting it off and checking the results against your calculations.
That’s where this pamphlet comes in. It is pretty straight forward
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to get started with the calculations and even refine them to the
point of accurately predicting results. We'll start off with a simple
calculation and see what it has to say. Once we get this under our

belts, we’ll add in corrections for air resistance (drag), non-constant
thrust profiles, decreasing mass due to spent propellant, and even
touch on multistage calculations.

As for actually designing and building a model rocket it is my
pleasure to refer you to the classic Handbook of Model Rocketry by
Stine and Stine.

Audience

The intended audience is a middle school student who is inter-
ested enough in mathematics, physics, and/or spreadsheets to take
a look at the material without being intimidated. Ideally, the stu-
dent will have been exposed to Newton’s laws, be comfortable with
algebra, and be supported by a parent, teacher, or mentor com-
fortable enough with the material to present it, answer, and pose
questions to facilitate comprehension.

Indeed, on one end of the spectrum is a bSth-grader working
though the first chapter with a mentor to understand the basic
physics of motion and how simple algebra brings a quantitative
understanding of the world. On the other end is a lone 9th-grader
looking for an interesting rocket science project and needing a quick
introduction to the basic theory. Or perhaps, a high school physics
student who doesn’t quite get how Newton’s laws work, and wants
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to see an in-depth, detailed example of them in action. Yet another
reader might be the middle or high school teacher looking for a set
of interesting problems to present to eager young minds.

My hope is that for all these readers, this material presents
an interesting application of Newton’s laws, simple algebra, and
automated calculation via spreadsheet, tied up into a project that
is fun, interesting, challenging, rewarding, and open ended.
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90 APPENDIX A. RESOURCES

e http://www.esteseducator.com/Pdf files/Part 1.pdf (also
parts 2,3,... though I haven’t been able to get through to this
website for a while now)

A marvelous rocket simulator call OpenRocket is freely available.
It is based on the Masters thesis by Sampo Niskanen you can find
more at:

e http://openrocket.sourceforge.net/

Furthermore, you’ll probably turn up even more about model rock-
etry by searching for the following (or your own more specific) key
words:

e Model Rocketry
e Model Rockets
e Rocket Engines

e Rocket Aerodynamics

In addition, the following books are fantastic sources for more in-
formation and further reading:

G. Harry Stine, Bill Stine: Handbook of Model Rocketry, Sev-
enth Edition. A great general purpose resource for all aspects
of Model Rocketry.

Dayvid Berlinski: Newton’s Gift: How Sir [saac Newton Unlocked
the System of the world. A celebration of the system of
thought that created physics, and the man who gave it to
us.
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Appendix A

Resources

Once you start looking, you may be surprised to find how much
information on Model Rocketry there is online. Here are some
links to get you started:

e http://en.wikipedia.org/wiki/Model rocket

e http://exploration.gre.nasa.gov /education /rocket /rktengperf.html
e http://www.modelrockets.us/index.php

e http://www.nar.org/

e http://www.tripoli.org/

e http://www.rocketsnw.com/

o http://www.grc.nasa.gov/WWW /K-12/airplane /rockth.html

e http://www.apogeerockets.com /education /index.asp
For those of you who are not adverse to looking through more

advance mathematics, let me point out a few links that got me
started with my trajectory estimates:

e http://www.apogeerockets.com /education/
downloads/numeric_ methods.pdf
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CHAPTER 6. FURTHER INVESTIGATIONS

layers like nested balloons, where the natural state (without
the rocket) is like a long thin empty balloon, but that as the
rocket passes through, the balloon must be blown up to the
shape of the rocket. Think of the balloon pressing on the sides
of the rocket, causing friction. The more you blow up the
balloon and separate its sides, the more friction on the rocket
there would be, with the primary source of friction being the
drag surface.

Design, setup, and use a wind tunnel to test the various surface
sizes, shapes, and materials, and test various drag coefficient
analytic models and values.

Investigate the various NAR allowed engine fuels and compare
the impact of the various mass, burn, and thrust characteris-
tics on trajectory estimations. Extend this to include different
initial packing and ignition geometries on thrust profiles and
resulting trajectories.

Design setup, and use an engine thrust measurement system to
test various engines. Vary the engine sizes, fuels, geometries.

Refine the engine mass model to include the slow burning of
delay mass.

Develop a theoretical ground model and investigate the im-
pact crater of an object by incorporating it into the trajectory
calculations. Model the ground with various densities and vis-
cosities and compare the impact craters.

Investigate the effect of a model improvement (engine mass,
fuel composition, air density, drag coeflicient, ...) across differ-
ent flight combinations (rocket mass, engines of differing total
impulse and average thrust).

Investigate the sensitivity of trajectory estimation across vari-
ous parameters (mass, fuel, total impulse, average thrust, drag
coefficient, air density, ...).

Chapter 1

Basic Trajectory Calculations

Getting started with rocket trajectory calculations is pretty easy, as
long as we don’t expect too much accuracy from our initial results.
It is a great way to understand the basic physics and builds a
conceptual base from which to improve our estimates. Let’s start
with the force equation, Newton’s second law of motion:

F =ma

This is the law of motion that relates a given force F' to a
change in motion of a body with mass m to which it is applied,
causing the acceleration a. A force is simply a push or a pull (in a
given direction). Newton’s first law of motion, the law of inertia, is
the observation that objects remain in a constant state of motion
unless acted on by a force. Inertia is an object’s resistance to
change in motion. Mass is simply a measure of the amount of
inertia an object has (telling us how much we have to push or pull
in order to get it to change its motion a certain amount). We'll
talk more about acceleration below.

Newton’s second law is a bit more than a simple equation of
numbers: it is in fact a vector equation in which both the force F
and the acceleration a are vectors (think arrows) that have both
a magnitude (arrow length or size) and direction. The mass m is
a scalar (just a multiplicative number). With this in mind the

1



2 CHAPTER 1. BASIC TRAJECTORY CALCULATIONS

equation tells us not only the relation between the applied force
and acceleration magnitudes, but also their directions. Neverthe-
less, we will make the simplifying assumption that all of the forces,
accelerations, and motions are in the same direction (up) or its op-
posite (down) in which case the vectors and their algebra reduces
to numbers and the more familiar algebra of numbers.

To start calculating with this equation we’ll need to know more
about: the mass of the rocket, the force supplied by the rocket
engine, and the force of gravity that will pull the rocket down.
Furthermore, we’ll need to know them in the right measurement
units. Physicists have settled on standard units that make sure the
force equation works. One set of these standards is the Meters-
Kilograms-Seconds or MKS system in which measurements
are expressed in meters, kilograms, and seconds. This is the system
we’ll be using for the force equation.

Let’s start with velocity, which is the change in position per
change in time. This is a vector in the direction of the arrow from
the starting position to the ending position. We'll assume all the
positions are in a vertical line (up and down) in order to ignore the
vector direction, and concern ourselves only with the length of the
distance between positions. Since we’ll measure position in meters,
a difference in position is also some number of meters. Similarly,
we’ll measure time in seconds, and a difference in time will be some
number of seconds, giving a velocity in meters per seconds (m/s):

Time Interval End

(—A height = 0.003215 m
time = 0.02 s

Displacement Vector Velocity Vector
Arrow from Start to End direction of displacement vector

length = 0.003215 m but length: 0.003215 m = 0.3215 m/s
' 0.01s

Time Interval Start
~—— height = 0.00 m

time = 0.01 s

Chapter 6

Further Investigations

Here is a collection of ideas that come to mind. Hopefully, they
will sound interesting to you, or, perhaps, spark some of your own
new ideas for further investigation. In any case here they are:

e Rather than use a spreadsheet, write a program that generates
trajectory estimates. Extend the program so that you can also
input actual flight trajectory data (from an altimeter) and
compare it to estimates. Extend the program even further to
adjust parameters that make the estimates closer to the actual
data. This takes you into the field of optimization, and if you
intend to give it a try you might want to start by finding a
text that has a friendly introduction at a level that suits your
interests and background.

o Investigate air density as an ideal gas taking into consideration
humidity, temperature, and altitude. One place to start is the
http://www.en.wikipedia.org/wiki/Density of air. However,
it might be more understandable and enjoyable to use the more

leisurely approach of a text like An Introduction to Thermal
Physics by C. J. Adkins.

e Come up with an analytic model for the coefficient of drag, by
using the drag surface area of in combination with the angle
of inclination the various patches of drag surface. A further
extension might think of the flow of air around the rocket in

87



86 CHAPTER 5. HOW HIGH DID IT GO?

Calculate the Apogee

Now that we have the measured distance from the viewpoint to the
launchpad, lets call it B, and the lengths of A, and b for the smaller,
similar triangle, we can solve for the apogee, call it H, as follows.
We simply setup an equation that expresses the equality of the
common proportion (or scale factor) between the similar triangles:

==
= @

Now multiply both sides by h to solve for H:

H=--
b

For example, suppose we have the following values: h = 0.8, b =
0.6, and B = 100m. Then we find that the apogee is approximately
133.3 meters.

Exercises

1. Suppose that you measure off 100 meters for B and have lim-
ited the measured angle to apogee to definitely lie between 66
and 67 degrees. What is the corresponding range in apogee?

2. Use the Pythagorean Theorem (equation for the squares of the
lengths of the sides of a right triangle) and a square of side x
and diagonal 1 to show that both the sine and cosine of a 45
degree angle is exactly the square root of 2 divided by 2.

3

For example, if our rocket moves from a height of 0 meters
straight up to a height of 0.003215 meters in 0.01 seconds, the ve-
locity will be 0.3215 meters per second straight up. The magnitude
(length, or size) of the velocity vector is known as the speed. In
our example, we would say the speed of the rocket is 0.3215m/s.

Acceleration is the change in velocity per change in time. This
(also a vector) is the difference in velocity over a period of time.
Since we focus on motions only in the vertical direction, our veloci-
ties will also all be vertical. This simplifies addition and subtraction
of velocity vectors to the addition and subtraction of their magni-
tudes (lengths, or speeds), with the corresponding direction being
always either straight up or down (if we measure positive positions
in the up direction, negative velocities will be down). Just as the
difference between positions in meters is a number of meters, a dif-
ference in velocities of meters per second is a number of meters
per second. Dividing again by seconds gives units of meters per
second per second. However, just as half of a half is one quarter
((1/2)/2 = 1/4), per second per second is the same as per second
squared ((1/s)/s = 1/s?). Thus, using the MKS system, accelera-
tion has units of meters per second squared (m/s?).

A

Acceleration Vector <
direction up, length:
(0.6430-0.3215) m/s = 0.3215 m/s
0.01s 0.01s
= 3215 m/s?

Time Interval: 0.02 to 0.03 s
\1— Velocity Vector: direction up,
length 0.6430 m/s

Time Interval: 0.01 to 0.02 s
Velocity Vector: direction up,
length 0.3215 m/s




4 CHAPTER 1. BASIC TRAJECTORY CALCULATIONS

For example, if our rocket is moving with a velocity of 0.3215m /s>
straight up at time 0.01 seconds, and is moving with a velocity of
0.6430m /s straight up at time 0.02 seconds, then the corresponding
acceleration is:

(0.6430 — 0.3215) m/s _ 0.3215m/s

= = 32.15m/s*
(0.02—0.01) s 0.01 s m/s

Finally, we come to the measuring of forces. Newton’s force
equation F' = ma actually tells us how to measure forces. Using
the MKS system: measure the acceleration of an object in meters
per second squared (m/s?) and multiply by the mass of the object in
kilograms (kg) to find the force vector causing the acceleration. To
honor the man that shared his insightful understanding of motion,
physicists name the unit of force that accelerates one kilogram of
mass by one meter per second squared a Newton (N). We can
substitute the units into the force equation to write this as:

kg-m

F=ma — N= 5

S

For example, the force necessary to accelerate a 0.143 kg rocket
32.15m/s% is 4.59745 N, since 0.143 - 32.15 = 4.59745 and we are
using MKS units.

A trajectory is the path of a projectile (something that is
thrown, fired, or launched). Before we start the rocket trajectory
calculations, let’s try to get a feel for force in Newtons by consider-
ing a force we are all familiar with: the force of the earth’s gravity
that pulls objects down (towards the center of the earth).

Consider the force that a pound of chocolate would have in
Newtons. First note that one pound (11b.) is a perfectly acceptable
measure of force. Scales that measure the weight of an object are
measuring the force that the earth’s gravity exerts on the object,
the pull down toward the ground that the object feels. An object’s
weight is a different from its mass. On the moon, the same object
feels less pull down toward the center of the moon since the moon’s

SMALLER SIMILAR TRIANGLE 85

e g

|
[ I
}7 cos(a) —=> ‘ X

-1 0 cos(a) +1

The function that converts the angle a into the y-axis value
is known as the sine function, abbreviated sin, and we write the
sine of the angle a as sin(a), though many write it as just sin a.
Similarly, the corresponding function (co-function) that converts
the angle o into the z-axis value is known as the cosine function,
abbreviated cos, and we write the cosine of the angle « as cos(«),
though many write it as just cos a. There are many interesting
and surprising relationships to be explored in and between these
functions and angles, including a magical formula that lets us cal-
culate the sine and cosine function values to any precision we like.
Much of this forms the basis for a course in trigonometry and/or
calculus. However, for our purposes, we’ll just use a handy calcu-
lator, computer, or even (egads!) a cell phone to calculate the sine
and cosine of our measured angle. Just as above, we’ll call the sine
value h, and the cosine value b (for height and base respectively).
Be sure that you have the calculator (computer, or whatever) in
the mode where inputs tor these functions are specified in degrees
(not radians). You can check this by entering the value 45 and
getting back answers approximating the square root of 2 divided
by 2, approximately 0.70710678.
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Smaller Similar Triangle

One possibility for reproducing the launchpad-apogee-viewing tri-
angle is to create it on a piece of paper. A horizontal line will
represent the line from viewer to launchpad. A vertical line (at 90
to the horizontal) will represent the line from apogee to launchpad.
Either use graph paper for the horizontal and vertical lines, or draw
them yourself, being sure to construct the lines at 90 degrees as
carefully as possible. From the 90 degree angle (this represents the
launchpad) measure out a convenient distance, say 20 centimeters,
and mark a point on the horizontal line (this represents the view-
point). Finally, as precisely as possible, reproduce the measured
angle at the viewpoint (either by tracing the measuring device or
with a protractor), and continue the angled line until it intersects
the vertical line. Now measure the height to where the vertical and
angled lines intersect. Let’s denote this measured height by A and
the 20 centimeters (or whatever) distance of the base with b.

[f you are willing to invest in a little bit of advanced mathemat-
ics, we can do much better than this crude triangle construction
and measuring business with a calculator or computer. In the years
since the ancient Greeks, mathematicians have made a study of the
measurement of angles and triangles. It is more commonly known
as trigonometry and a large part of it focuses on right triangles
that fit in a unit circle, with the hypotenuse being a radius of the
circle.

The angle®* « is measured counterclockwise from the positive
x-axis, and as the angle progresses from 0° to 90°, the base of the
triangle goes from 1 to zero on the z-axis, and the height of the
triangle goes from 0 to 1 on the y-axis. Then as the angle continues
from 90° to 180°, the base goes from 0 to -1 on the z-axis, and the
height goes from 1 to 0 on the y-axis. As the angle grows, the
height continues on into the negative y-values to -1, then increases
again toward +1. You can also imagine the angle growing in the
negative, clockwise direction.

3The name of the Greek letter « is alpha and it corresponds to our lowercase letter a.

5

gravity is about 1/6th of the earth’s. The object’s weight on the
moon is about 1/6th its weight on earth, even though its mass is the
same. An object’s mass is a measure of its inertia, the property
of resisting acceleration (a change in motion). The more an object
resists acceleration, the more mass it has, and a correspondingly
greater force must be applied to change its motion.

Measuring force with the weight of objects goes back to the
1700’s!. Galileo’s famous experiments brought to light the fact that
at sea level, the earth’s gravity? accelerates all objects at the same
rate®: approximately g ~ 9.80665 m/s®. (This number changes
as the distance from sea level changes.) Plugging this number for
acceleration into the force equation, and 0.45359237 kg for the mass
equivalent to one pound? of force at sea level, we find the force in
Newtons to be approximately 4.448 N. Alternatively, since 4.448
is between 4 and 5, one Newton feels like the force of between one
quarter and one fifth of a pound.

F = m-a

m-g
4448 N ~ 0.45359237 kg - 9.80665@2
5

Now that we have some experience with force, mass, acceler-
ation, and the force equation, let’s use them to see how a rocket
shoots up through the sky. Our first step is to identify the forces
acting on the rocket. Of course, gravity will pull the rocket down,
but the rocket engine will push the rocket up. This lets us refine
our force equation by separating the total force F' into the force of
the rocket engine F, (using a plus sign since it pushes the rocket
up) and the force of gravity F, = mg (with a negative sign since it
pulls the rocket down) as follows:

Thttp:/ /www.wikipedia.org/wiki/Pound _ (force)
2http://en.wikipedia.org/wiki/Gravitation
3http://www.wikipedia.org/wiki/Standard _gravity
4http:/ /www.wikipedia.org/wiki/Pound _(force)
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F ma
F,.—F, = ma
F,.—mg = ma

on
A

The pull of gravity cancels thisJ
much engine thrust, leaving this —/
much thrust to move the rocket.

We can use the algebra of lengths
as long as the vectors are on the
same line, and lengths are signed.
For instance, the gravitational
force, mg, is assigned a negative
|| sign while engine thrust, Fe, is

/ \— positive.

Now divide both sides of the equation by the mass of the rocket
to solve for the acceleration:

ulli;
mo ||t

To generate trajectory estimates we’ll need some measurements.
Let’s suppose that our rocket has a mass of 143 g. (This is the mass
in grams reported for one of my model rockets by an electronic
kitchen scale I use. The scale converts the gravitational force mea-
sured as the downward pull of the rocket into grams of mass using
appropriate conversion factors that assume it is at sea level).

MEASURE DISTANCE AND ANGLE 83

Measure Distance and Angle

You can use a couple of meter sticks to measure off a distance from
the launchpad by laying one stick down in front of the other as you
move away from the launchpad. It works even better if you have,
say, 4 or b meter sticks and a friend to help. The most accuracy
results from an angle near 45%, so it is better to measure out a
distance near the expected apogee.

To measure the angle of the rocket at apogee, you need an angle
measuring device. You can make one from a couple of flat pieces
of wood such thin meter or yard sticks. Just drill holes at one end
of each stick, about in the center of the stick. For instance if the
stick is 1 inch wide, drill a hole about 1/2 inch in from the end
and each of the sides, just large enough for a screw and nut. Put
the screw through the holes and tighten the sticks together with
a lock-nut, tight enough to maintain the angle of separation when
the sticks are released, but not so tight that the sticks cannot be
easily separated.

To use the device at the time of launch, close the sticks together
and sight along them, level to the ground, toward the rocket on the
launchpad. As the rocket rises, with one hand keep one of the sticks
level to the ground and pointing to where the rocket was, and with
the other hand raise the other stick so that you sight the rocket
along it as it rises to apogee. All the while, you have the corner of
the device (where the two sticks are bolted together) stuck in your
face, almost touching your eye. All this manipulation may take
some practice to master, so try it a few times before you launch the
rocket.

Once you have captured the angle accurately, measure it with
the protractor as accurately as possible. The accuracy with which
you measure this angle will probably be the determining factor of
the accuracy of the resulting apogee value.
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we use some modern mathematics, we don’t even need to measure
the smaller one.

I'll describe a primitive, low tech method, but we’ll need the
following:

e An approximately vertical rocket flight.

e An approximately level and flat launch area.

e To be able to see the rocket at apogee.

e A couple of meter sticks to measure distance on the ground.

e A sightable angle measuring device (made from a couple of
sticks and a bolt).

e Some geometry and geometric tools (compass, ruler, protrac-
tor).

The idea is to measure both our distance from the launchpad, and
the viewed angle from launchpad height to apogee height. Next
we’ll need a smaller, more manageable, similar triangle so that we
can get its base and height lengths. Finally we calculate the apogee
using the proportionality of the similar triangles.

7

We'll also need the engine thrust, the amount of pushing force
of the engine. To do this, let’s suppose we choose a C6-3 engine.
The C tells® us that the engine will have a total mount of pushing
power or total impulse (amount of thrust for a period of time)
in the range of 6 to 12 Newton-seconds. The Estes C6-3 engine
has a total impulse of about 9 Newton-seconds®. The 6 tells us
that the average thrust will be about 6 Newtons, and the 3 tells us
the (parachute deploying) final charge will have a delay of about 3
seconds.

Plugging these numbers into our modified equation, we find the
acceleration in units of m/s?:

6N

= 980665 2 ~32.15 2
¢ 0143 kg m/s m/s

We are almost ready to calculate how the rocket will move.
However, in order to do so with the tools we have at hand, we
must make the following simplifying assumption. Even though the
height and velocity change rapidly with time, we will only look at
the values at fixed points in time and assume these values remain
relatively constant between time points. This approach is known as
discrete sampling and depends on values changing slowly along
the sample points in order to yield accurate predictions.

We can now calculate how the rocket will move by starting with
the rocket on the ground at an initial height of (0 meters, sitting
still with an initial velocity of 0 meters/second. The only question
remaining is what time unit to use. Since the velocity will be
changing rapidly even though we’ll be assuming constant values
over the time increment, the smaller the time increment, the more
accurate will be our estimates. Let’s use a time increment of a
hundredth of a second (0.01 seconds) to fill in the following table™:

Shttp://en.wikipedia.org/wiki/Estes_Industries

Shttp://www.nar.org/pdf/Estes/C6.pdf

"The letters in parentheses in the table headings denote the measurement units:
s=seconds, m=meters.
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Time || Acceleration || Velocity || Height

(s) (m/s?) (m/s) (m)

0.00 32.15 0.0000 0.0000
0.01 32.15 0.3215 0.0000
0.02 32.15 0.6430 | 0.003215
0.03 32.15 0.9645 | 0.009645
0.04 32.15 1.2860 | 0.019290

How did we get these numbers? We start with the idea that
acceleration (32.15 m/s per second) is the change in velocity per
second and multiply by the change in time of 0.01 seconds to get
the change in velocity for that increment of time. We then add
that velocity change to the entry in the velocity column for each
time increment of 0.01 seconds. In a similar way, we use the idea
that velocity is the change in height per second, and multiply the
velocity by the change in time of 0.01 seconds to get the change in
height.

For example, starting in the first row of the table, with an ac-
celeration of 32.15m/s?, a velocity of 0m /s, we estimate that after
0.01s the change in velocity will be 0.01s-32.15m/s* = 0.3215m/s.
Since the acceleration is the same for the second row, the change
in velocity will again 0.3215m/s from row two to row three, giv-
ing a velocity of (0.3215 + 0.3215) m/s?> = 0.6430 m/s for the
third row. At time 0.03 seconds, our velocity estimate will be
(0.6430 + 0.3215) m/s* = 0.9645m/s. And so on.

Similarly, we can estimate the height of the rocket at the various
times by using the estimated velocities. For example, after 0.01 s
at a velocity of 0 m/s, there will be no change in height, so the
height entry for time 0.01 seconds will be the same as for time
0.00 second, namely a height of 0 meters. However, with a velocity
at time 0.01 seconds of 0.3215 m/s, we estimate the change in
height from 0.01 seconds to 0.02 seconds as 0.01 s - 0.3215m/s =
0.003215m, giving a height at time 0.02 seconds of 0.003215m. In
the same way, with a velocity at time 0.02 seconds of 0.6430 m/s,
we estimate the change in height from 0.02 seconds to 0.03 seconds

Chapter 5

How High Did It Go?

Once we have our rocket, weighed it, measured it, and plugged
in all the parameters to get our best estimate of the trajectory, we
can select the engine delay and actually load and launch the rocket.
However, a big piece of the estimation process (perhaps the most
important piece), is comparing the estimates to actual results.

So, how do we measure how high the rocket goes on its actual
flight? There are two common ways. One is to insert an altimeter
into the payload bay of your rocket (be sure to include the mass in
the trajectory calculations) and have it collect data for the flight.
This is the preferred option, since you get height readings at regular
intervals. After the flight, the data is available for download to a
computer with software that comes with the altimeter. However,
for simple rockets without a payload bay, or in case you don’t care
to spend hard-earned money on this sort of thing, there is another,
geometric way of determining how high the rocket went.

The geometric method was used by ancient Greeks to determine
how far a ship was out to sea. The main idea is based on the
proposition' that the lengths of sides of similar? triangles are in
common proportion. In the diagram below, we can’t measure the
large triangle, but we can measure a similar, smaller one. In fact, if

!Thomas Heath: Euclid’s The Elements Book VI proposition 4.
2A similar triangle is one that differs only in size: the corresponding angles are the
same.

81
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Exercises

1. Modify the spreadsheet you created in exercise 5 of chapter 3
to:

(a) Create an engine data sheet for an Estes C6 engine.

(b) Incorporate the refinements described in this chapter for
engine thrust for the C6 engine.

(c) Incorporate the refinements described in this chapter for
the engine mass for the C6 engine.

2. Use the spreadsheet from exercise 1 above to generate multi-
stage trajectory estimates (take a look exercise 8 of chapter 3
for further details on multistage rockets and RedDevil rocket
properties).

(a) Create an engine data sheet for an Estes D12-0 engine.

(b) Don’t forget to add the mass of the second stage C6-3
rocket engine when constructing the Rocket Properties ta-
ble row for the RedDevil.

(c) For the RedDevil, EstesD12 Flight Combination, find the
time, velocity, and height at the time the D12 engine cuts
out.

(d) For the RedPhoenix, EstesC6 Flight Combination, enter
the initial velocity and height you collected in part (b)
above, and record the apogee height, maximum velocity,
and flight time (as the sum of the apogee time of the
second stage and the time until engine cut off collected in
part (a)) for the two stage rocket flight.

(e) If you did exercise 8 of chapter 3, compare the results.
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as 0.01 s - 0.6430 m/s = 0.006430 m, giving a height at time 0.03
seconds of (0.003215 + 0.006430) m = 0.009645 m. And so on.

Notice that our assumption of constant, accurate values for a
fixed time increment together with the procedure we use for gener-
ating estimates result in the peculiarity that initially the rocket does
not move for two whole time increments regardless of the accelera-
tion value. This is an artifact of our assumptions and procedures.
To probe this issue further, try exercise 11g.

Before going further, let’s stop and notice the patterns in the
table. To do so, we’ll rewrite the table using a symbolic name
for the increment in velocity. Since the acceleration is a constant
32.15m/s?, so will the velocity increment be a constant 0.3215m/s
as we saw above. We’ll give the symbolic name v to the increment
0.3215 and use it to rewrite the table as follows:

Time || Acceleration || Velocity Height
(s) (m/s?) (m/s) (m)
0.00 32.15 0 0
0.01 32.15 1v 0
0.02 32.15 2v 0.01v
0.03 32.15 3v 0.01(1 + 2)v
0.04 32.15 4v 0.01(1+2+3)v

More specifically, the velocity starts at 0 m/s, and to get the
next velocity entry we simply add v to the current velocity. This
results in a velocity entry that simply increments the number of v’s
from each row to the next.

Similarly, the height starts at 0 m, and since the velocity is
initially 0 m/s (not moving), to get the next height entry we add
0.01(0v) = 0 meters to the current one (0 meters). For the next
entry (time 0.02), we multiply the previous velocity 1v by the time
increment 0.01 and add it to the current height. At the next row
(time 0.03) we add the contribution from 2v to the current row

which already has the contribution of 1v, and so on. If you are still
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wondering how we got the last entry in the height column of the
table, take a look at exercise 2.

Now let’s think about a particular, but generic, entry farther
down in the table, the one for time 0.01n, without specifying n.
It is pretty clear from our table and discussion above that just as
4v is the velocity for 0.04 seconds, the velocity estimate for time
0.01n seconds will be nv. We can also see that the corresponding
height estimate will be 0.01(1 4+ 2+ 3+ ... 4+ (n — 1))v. This is
a fine mathematical expression, but we can do a little better if we
notice that pairs of numbers, one from the left and one from the
right, sum to n. The final step is to notice how many pairs there
will be. We have to be careful to consider both sequences with an
even number of integers and sequences with an odd number. This
is a good time to try exercises 3 and 4 to clarify this point so that
you agree with the following calculation:

1+243...+(n=-3)+(n-2)+(n—-1) =
n+2+4+3+...+4n=-3)+(n—-2) =
n+n+3+...+4(n-3) =

n(n—1)

n+n+n+... = 5

Using this summation trick, we can provide a general expression
for the table of trajectory estimates for the powered part of flight
as follows:

Time || Acceleration || Velocity Height
() (m/s?) (m/s) (m)
0.00 32.15 Ov Ov
0.01 32.15 1v Ov
0.02 32.15 2v 0.01v
0.03 32.15 30 0.01(1+ 2)v
0.04 32.15 4v 0.01(1+2+3)v
0.01n 32.15 nov 0.0ln(n — 1)v/2

COMPARISON 79

We can see that the decreased mass and extra total impulse is
a significant difference between the simple and improved models.
Beyond that, the time varying nature of the thrust and mass is still
a significant difference between the improved and hybrid model.
Even though the hybrid and improved outputs are within 15% of
each other, the largest difference is in the maximum velocity and
effects the very motion that we are trying to estimate.
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Comparison

I'll list the resulting trajectory estimates that include the improve-
ments in this chapter here so you can use the values to compare
against you own spreadsheet:

Time | Used Mass | Thrst | Acc no Drag | Accw Vel Ht
(s) | (frac) | (kg) | (N)| Drag|(m/ss)| Drag| (m/s)| (m)
0.000 | 0.000 | 0.16783 | 0.000 | -9.8066 | 0.0000 | -9.8066 | 0.0000 | 0.0000
0.010 | 0.000 | 0.16783 | 0.305 | -7.9884 | 0.0000 | -7.9884 | 0.0000 | 0.0000
0.020 | 0.001 | 0.16783 | 0.610 | -6.1700 | 0.0000 | -6.1700 | 0.0000 | 0.0000
0.030 | 0.002 | 0.16782 | 0.915 | -4.3514 | 0.0000 | -4.3514 | 0.0000 | 0.0000
0.040 | 0.003 | 0.16780 | 1.518 | -0.7575 | 0.0000 | -0.7575 | 0.0000 | 0.0000
0.050 | 0.005 | 0.16778 | 2.155 3.0348 | 0.0000 3.0348 | 0.0000 | 0.0000
0.060 | 0.008 | 0.16775 | 2.791 6.8289 | 0.0000 6.8289 | 0.0303 | 0.0000
0.070 | 0.011 | 0.16771 | 3.427 | 10.6253 | 0.0000 | 10.6253 | 0.0986 | 0.0003
0.080 | 0.016 | 0.16767 | 4.063 | 14.4245 | -0.0001 | 14.4245 | 0.2049 | 0.0013
1.820 | 0.990 | 0.15714 | 4.448 | 18.4490 | -6.0131 | 12.4859 | 31.6572 | 33.1295
1.830 | 0.994 | 0.15709 | 3.399 | 11.8312 | -6.0631 5.7681 | 31.7820 | 33.4461
1.840 | 0.998 | 0.15706 | 2.292 | 4.1425 | -6.1129 | -1.9703 | 31.8397 | 33.7639
1.850 | 0.999 | 0.15704 | 1.019 | -3.3164 | -6.1364 | -9.4528 | 31.8200 | 33.0823
1.860 | 1.000 | 0.15703 | 0.000 | -9.8066 | -6.1296 | -15.9362 | 31.7255 | 34.4005
4.580 | 1.000 | 0.15703 | 0.000 | -9.8066 | -0.0003 | -9.8069 | 0.1213 | 74.3240
4.590 | 1.000 | 0.15703 | 0.000 | -9.8066 | -0.0001 | -9.8067 | 0.0232 | 74.3252
4.600 | 1.000 | 0.15703 | 0.000 | -9.8066 | 0.0000 | -9.8067 | -0.0749 | 74.3255
4.610 | 1.000 | 0.15703 | 0.000 | -9.8066 | 0.0000 | -9.8066 | -0.1730 | 74.3247
4.620 | 1.000 | 0.15703 | 0.000 | -9.8066 | 0.0002 | -9.8065 | -0.2710 | 74.3230

Let’s compare estimate outputs for the case of the simplistic

engine model, the improved engine model, and a hybrid model that
is the simplistic model that includes the mass of the engine with half
of the propellant and total impulse equal to the improved model:

Simple | Improved | Hybrid
Apogee (m) 92.3015 74.3255 | 76.3255
Apogee (s) 4.7400 4.6000 | 4.4800
Maximum Velocity (m/s) | 41.8786 31.8397 | 35.9668
Coast Time (s) 3.2400 2.7400 | 3.0100
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How far should the table continue in this fashion? We can
calculate how long the engine will supply thrust by dividing the
total impulse of the engine, 9 Newton-seconds for a C6-3 engine, by
the average thrust of 6 Newtons to see that it should burn for about
1.5 seconds (that is, n = 150). What is the estimated height of the
rocket at that point? What is the estimated velocity? Let’s plug in
the value 150 for n and find out. We find that the velocity estimate
for time 1.5 seconds is 150 - 0.3215m/s = 48.225 m/s. Similarly,
the estimated height at that time is 0.01(150 - 149)0.3215m/2 =
35.927625 m.

What happens when the rocket engine cuts out? Look back to
the equation for acceleration on page 6. When F, goes to zero, the
equation becomes: —g = a. Once the engine thrust stops, the only
remaining force acting on the rocket is the downward pull of earth’s
gravity, reducing the upward velocity with its downward accelera-
tion. This is called the coast phase of the flight in contrast to
the previous powered phase when the engine is thrusting. We’ll
assume that the rocket is near enough to the surface of the earth to
use the same gravitational acceleration g = 9.80665m/s* through-
out. We can calculate estimates just as we did before, except that
now we use a downward acceleration, negative 9.80665m/s%. We'll
start a new table at the point the engine dies, starting from our
results above, adding 0.01(—9.80665) m/s = —0.0980665 m/s to
each subsequent velocity entry, and adding the product of velocity
and 0.01 s for each subsequent height entry:

Time || Acceleration || Velocity Height
() | /) | m/s) (m)
1.50 -9.80665 48.225 35.927625
1.51 -9.80665 48.1269335 |  36.409875
1.52 -9.80665 48.0288670 | 36.891144335
1.53 -9.80665 47.9308005 | 37.371433005
1.54 -9.80665 47.8327340 | 37.850741010

Just as before, we’re interested in the patterns that form the
numbers. We’ll introduce some symbols so that we end up with
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algebraic expressions for the entries. That way, we’ll be able to plug
different values in, and even solve for values that are interesting to
us, as we shall see. Let’s start by introducing a symbolic name d
for the velocity increment 0.0980665, and rewrite the table with it
instead of the numeric values as follows:

Time || Accel. Velocity Height
() | (m/s) || (mfs) (m)
1.50 | -9.80665 48.225 35.927625
1.51 | -9.80665 | 48.225 —d 35.927625 + 0.01(48.225)

1.52 | -9.80665 | 48.225 — 2d 35.927625 + 0.01(2 - 48.225 — d)

1.53 | -9.80665 | 48.225 — 3d | 35.927625 + 0.01(3 - 48.225 — (1 + 2)d)

1.54 | -9.80665 | 48.225 — 4d | 35.927625 + 0.01(4 - 48.225 — (1 + 2+ 3)d)

This is a good time to verify the height entries in the last column
of the table by trying exercise 5 before going on.

Now continue by introducing symbolic names T', V', and H for
the starting time, velocity, and height respectively, and rewrite:

Time Acceleration || Velocity Height
(s) (m/s?) (m/s) (m)
T -9.80665 v H
T+ 0.01 -9.80665 V—d H+0.01(V)
T +0.02 -9.80665 V —2d H +0.01(2V — d)

T+003| -9.806656 | V—23d | H+001(3V —(1+2)d
T+004| -9.80666 | V—4d | H+0.01(4V — (1+2+ 3)d)

Just as before, we’ll focus our attention on an entry lower in
the table, say, for time 7'+ 0.01k. Once again, we can see from the
table that the velocity entry at time 7'+ 0.01k will be V' — kd, and
the height entry will be H+0.01(kV — (1+2+3+...+(k—1))d).
Using our summation trick again, we can write the sum 1 4+ 2 +
34+ ...+ (k—1)as (k(k—1)/2) so that the table of trajectory
estimates for the coasting phase of the flight becomes:

INCORPORATE IMPROVED ENGINE MASS 7

=(vlookup($A28,EstesC6!$A$8:$F$39,6,1,0)+
0.5%($D28+v1ookup ($A28,EstesC6!$A$8:$F$39,2,1) ) *
($A28-v1ookup ($A28,EstesC6!$A$8:$F$39,1,1)) /$F$14.

To generalize this for the engine in $A$12, substitute the ex-
pression: indirect(concatenate($A$12,"1$A$8:$F$39"))
for each cell range: EstesC6!$A$8: $F$39 above.

Upon entering the formula, you should see the value 0 appear.
When you drag it down the column, the values should increase
steadily to the value 1 at engine cut-out and then remain 1 to
the end of the table.

Mass (g) C28:C1028. In C28 we'll convert Propellant Mass to
kilograms, scale it by the Fuel Used fraction and subtract it
from Rocket+Engine Mass to get time varying rocket mass:

=$A$22-$B28*indirect (concatenate ($A$12," 1 $A$3"))/1000.

Upon entering the formula, you should see the the full Rocket
+ Engine Mass value appear. When you drag it down the
column, the values should decrease steadily to reflect the loss
of all propellant mass at engine cut-out and then remain there
to the end of the table.

Acceleration without Drag (m/ss) Now E28:E1028. Edit the
formula =B28/$A$22-$F$12 in cell E28 and replace any cell
reference $A$22 to static, pre-flight rocket mass with $C28 for
the current, time-varying mass: =B28/$C28-$F$12. Drag the
formula down the table, and scroll through the spreadsheet to
verify the numbers.

Drag (m/ss) Now F28:F1028. Edit our previous formula in cell
E28: =-sign (F28) *$F$11x$A$23*x$A$24xF28%F28/ (2x$A$22)
replacing any cell reference $A$22 to static, pre-flight rocket
mass with $C28 for the current, time-varying mass:

=-5ign(F28) *$F$11x$A$23*x$A$24«xF28*F28/ (2% $C28) .

Drag the formula down the table, and scroll through the spread-
sheet to verify the numbers.
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Things get a bit stickier for these last few modifications to the
Trajectory Calculations table. What we’ll be doing is to add a
couple of columns to the table, one to keep track of how much of
the fuel is used at the current time, and the other to reflect the
corresponding mass of the rocket. First, make space for the new
rows by selecting the cell range B26:G1028, cutting it, and pasting
it over on the right side, at cell H26. Now, while it is still selected,
right-click inside it at cell H26 and cut it again, and then paste it
into cell D26. Then arrange the labels so that the top-left portion
of the table looks something like this:

Time | Fuel Used | Mass | Thrust | w/o Drag Drag w/Drag

(s) (frac) (kg) (N) | Acc(m/ss) | (m/ss) | Acc(m/ss)
0.000 6.000 32.1514 | 0.0000 32.1514
0.010 6.000 32.1514 | 0.0000 32.1514
0.020 6.000 32.1514 | -0.0007 32.1507
0.030 6.000 32.1514 | -0.0027 32.1486
4.780 0.000 -9.8066 | 0.0002 -9.8058
4.790 0.000 -9.8066 | 0.0005 -9.8053

Fuel Used (frac) B28:B1028. These values range from 0 at ig-
nition, to 1 at the time the engine cuts out. The idea is to
form a current used impulse and divide by the Total Impulse.
We’ll lookup Used Impulse in the Thrust Profile table and add
in the incremental impulse for the current time. We'll form
the incremental impulse from Thrust (looked up in the Thrust
Profile table) and the current Thrust. Recall that the impulse
will be given by (z2 — 21)(y2 + y1)/2. Notice that the current
time s is in cell A28, the current thrust ys is now in cell D28,
and the total impulse is in cell F14. With this in mind, we
can formulate the fuel used fraction for the EstesC6 engine
into cell B28 as:
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Time Acceleration || Velocity Height
(s) (m/s?) (m/s) (m)
T -9.80665 Vv H
T+0.01 -9.80665 V—1d H+0.01(V)
T+0.02 -9.80665 V —2d H+0.01(2V — (1)d)

T+003 | -9.80665 | V—23d | H+00L(3V —(1+2)d)
T+004 | -9.80665 | V—4d | H+001(4V — (1+2+3)d)

T+001k| -980665 | V—kd | H+0.0L(kV — k(k — 1)d/2)

What does this table actually tell us? The first thing to notice
is that the velocity will remain positive (the rocket will continue
its upward climb) until kd becomes larger than V. When does this
happen? Plug the numbers for V' and d into V — dk = 0 and
solve for k!' Once we know k, we have an estimate for how long
the rocket will climb, coasting after the engine dies. We can use
this time estimate to pick an engine with a similar delay so that
the rocket will go as high as possible and its velocity will be small
when the parachute is deployed. The highest point of the climb is
called the apogee. We can estimate the apogee by plugging the
numbers for 7', V| H, d, and k into H + 0.01(kV — k(k — 1)d/2).
If we want to estimate the height with a 3 second engine delay for
deployment of a parachute, plug in a corresponding value for k. (A
3 second delay gives a k of 300.)

Before you get too excited about these rocket trajectory esti-
mates, let me give you a clue to an improvement we’ll work on in
the next chapter. Anyone who has ridden a bike against a strong
wind will know that we are ignoring a significant component that
will affect our height estimate for the rocket. Before we get to it,
however, give the following exercises a try.
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Exercises

1. Use the acceleration equation on page 6 to find the acceleration
a for a 0.143 kilogram rocket using a C11-X engine (having
average thrust of 11 Newtons). What is the corresponding 0.01
second velocity increment v for this constant acceleration?

2. What arithmetic laws do we use to rewrite the sum 0.01v +
0.01(2v) + 0.01(3v) as 0.01(1 + 2 + 3)v? List the steps in
between and justify each step with an arithmetic law.

3. Verify visually that 1 +2+ ... 4+ 7 = 8- 7/2 by: writing out
the list of numbers, connecting the first and last numbers, then
the 2nd and 2nd to last, and so on, counting the number of
lines you draw. Do the same for 1 +2+...+8 =9-8/2.

4. Verify visually that 1+2+...47 = 8-7/2 by: writing out the
list of numbers and its reverse so that the smallest of the 1st
list pairs with the largest of the 2nd, the next smallest of the
1st pairs with the next smallest of the 2nd, and so on. What
is the sum of each pair? How many pairs are there?

Show that: 0.01(48.225) 4 0.01(48.225 — d) + 0.01(48.225 —
2d) + 0.01(48.225 — 3d) is the same as 0.01(4 - 48.225 — (1 +
2+ 3)d by listing the steps in between and justifying each step
with an arithmetic law.

Ut

6. Find the number n of 0.01 second increments before the C11-
X engine (9.0 Newton-seconds total impulse) cuts out. Use
this and the 0.01 second velocity increment v from exercise 1
to determine the velocity V' = nv, and height H = 0.01n(n —
1)v/2 at the time the engine dies.

7. Use the values V = 48.225 m/s and d = 0.0980665 m /s in
the equation V = kd we found in the text to calculate the
number of 0.01 second increments k£ until apogee. Use this
value to find the coast time as k- 0.01 s. Finally, calculate the
apogee as H 4+ 0.01(kV — (k — 1)(k — 2)d/2) using the value
H = 35.927625 m from the text.
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Impulse and Average Thrust inputs to derived cells, and modify
the Rocket Mass. We'll also add the Coast time output cell to the
Trajectory Estimates section before we move on.

Rocket Engine Delay (s) B12. Simply type this value into the
cell. The main distinction is whether or not the value is zero.
Non-zero delays have increased engine mass. Zero delay en-
gines are only for the first stage of multistage rockets (see
exercise 8 of chapter 3). For example, enter the value 3.

Engine Burn (s) I114. We’ll glean the length of the engine burn as
the time of the first zero Thrust entry in the Trajectory Calcu-
lations table (not counting Time 0) and use it to calculate the
average thrust and coast times. Just as before (Apogee(s) page
3) we'll use the match() and index() spreadsheet functions:
=index ($A$29:$A$1028,match (0,$D$29:$D$1028,0)).

Total Impulse (Ns) F14. We convert this input cell to a derived
value that is now available from the rocket engine sheet spec-
ified by the Flight Combination via:
indirect (concatenate($A$12,” 1 $A$27)).

Average Thrust (IN) F15. We convert this input cell to a derived
value as the fraction Total Impulse divided by Engine Burn:
=$F$14/$1$14.

Rocket+Engine Mass (N) A22. First, we update the label,
then the value as well. For the value, we must add in the
rocket engine mass. The trick is that if there is a non-zero de-
lay, we need all three cells A3:Ab from the rocket engine sheet,
but only A3:A4 for a zero delay engine. We take care of this
with the i f() function when forming the cell range reference:

=(vlookup($A$11,$A$6:$J$8,3,0)+
sum(indirect (concatenate ($A$12,
if ($B$12>0," 1$A$3:$A$5" , " 1$A$3:$A$4"))))) /1000.

Coast Time (s) 123. With the addition of Engine Burn, this
output cell value is easy to calculate as: =$F$23-$1$14.
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$A28*v1ookup ($A28,
indirect(concatenate ($A$12,”’1$A$8:$F$39°7)),3,1)+
v1lookup ($A28,
indirect(concatenate ($A$12,1$A$8: $F$39)),4,1).

Once you have the new thrust formula entered (altogether on
one line), verify that the numeric value is zero. This is due to the
rocket engine starting its burn with zero Newtons of thrust. Next,
drag the formula down the B column of the Trajectory Calculations
table and verify the thrust values agree with the thrust profile.

You may also notice a resulting oddity in the velocity column.
The rocket starts moving down! It’s as if we were holding the
rocket off the ground at the time of launch, and dropped it at
engine ignition. We have not included the constraint that the rocket
is initially being supported by the ground. It supplies the force
required to keep the rocket from falling.

We’ll resolve this difficulty by adjusting the formulas in the
velocity column as follows. We’ll only add in the velocity increment
generated from the acceleration when either the acceleration (E28)
or the height of the rocket (G28) is greater than zero. We've talked
about the spreadsheet i f() function before, but we’ll also need the
spreadsheet or() function. The resulting formula we’ll enter into
cell F29 is: if (or (E28>0,G28>0) ,E28%$F$13+F28,0).

Incorporate Improved Engine Mass

We are now ready to incorporate our improved rocket engine mass
model into the Trajectory Calculations table, however, this is even
more complicated than the improved thrust model. Let’s begin
with the easier modifications and save the complications for last.
The first order of business is to add an input cell to the Flight Com-
bination to specify the number of seconds of delay for the Rocket
Engine, followed closely by the addition of a new derived input En-
gine Burn to the Trajectory Constants. Then we’ll convert Total

EXERCISES 15

8.

10.

11.

Use the value of V' from exercise 6 and d = 0.0980665 m /s
in the equation V' = kd we found in the text to calculate the
number of 0.01 second increments k until apogee. Use this
value to find the coast time as k- 0.01 s. Finally, calculate the
apogee as H 4+ 0.01(kV — (k — 1)(k — 2)d/2) using the value
of H from exercise 6.

. Assume that your rocket deploys a very large parachute that

will essentially stop the rocket from moving (pulls very strongly,
stopped relative to a fast velocity). Say your rocket has a
mass of 200 grams and and is moving at 50 meters per second.
What is the force in Newtons that your rocket will exert on the
parachute? What is the force in pounds? [Hint: Divide the
number of Newtons by 4.448 Newtons per pound to get the
force in pounds.] What does this say about the sturdiness of
your parachute and attachment? In what way can we reduce
the forces on the parachute?

Explain how the force equation can be used to define and
measure mass.

We are really on to something with the observation from page
12 that T+ 0.01k represents the time for the kth entry in the
trajectory estimate table on page 13. In this exercise, you’ll
rewrite the symbolic expressions for both the velocity, V — kd,
and the height, H + 0.01(kV — k(k — 1)d/2), as follows:

(a) Substitute 0.01a for —d in the expressions for velocity and
height.

(b) Regroup the values in the results of (a) so that 0.01 and
k always appear together as 0.01k.

(c) Substitute ¢ for 0.01k in the results of (b).

(d) Regroup the the results of part (c) into the form Mt + B
for velocity, and At?+4 Bt+C for height. We call the values
M, B, A, and C coefficients of the various powers of t.

(e) The points satisfying the equation y = Mx + B form a
line and often result from a quantity y that changes in
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proportion M to some other quantity x. We say that
the function y is linear in x. Which of the following
trajectory quantities is linear in time ¢: height, velocity,
and /or acceleration?

The points satisfying the equation y = Ax? + Bx + C
form a parabola and often result from a quantity y that
accumulates (adds up) values that are linear in a quan-
tity . We say that the function y is quadratic in z.
What trajectory quantity is quadratic in time 7 What
trajectory quantity linear in ¢ is being accumulated?

The coefficient B in the quadratic expression for height
from part (d) should contain the term: 0.01a/2. As we
make our time increment 0.01 smaller and smaller, the
values for a and ¢t will remain the same, but what happens
to the term: 0.01a/27 This term is an artifact of the
assumptions and the procedures we used to calculate the
trajectory values. Rewrite the quadratic height expression
from part (d) for the case of a time increment so small that
we can leave out the term: 0.01la/2.
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from the Thrust Profile table for the current time:
vlookup ($A28,EstesC6!$A$8: $F$39,4,1)

It is now easy to use the slope-intercept formula for a line to con-
struct the thrust for the current time as the expression'':

$A28*v1ookup ($A28,EstesC6!$A$8:$F$39,3,1)+
vlookup ($A28,EstesC6!$A$8:$F$39,4,1).

The last complication arises from the fact that rather than cod-
ing the engine sheet name into the formulas of the Trajectory Cal-
culations table, we’'d rather reference cell A12 that contains the
Engine name. That way, in order to use a different engine in the
trajectory calculations, we need only change one cell of the spread-
sheet. To do this, we’ll need to construct the cell range expres-
sions using the indirect() and concatenate() spreadsheet functions.
We’ll splice the Engine name to the Thrust Profile table range
string in the expression concatenate ($A$12,”’ 1 $A$8: $F$39°7).

However, just replacing the reference EstesC6!$A$12:$F$39
with this expression won’t work. That’s because the spreadsheet
thinks the result of the concatenate() function is a string, not a
cell reference. In order to specify the cell reference (and get the
value), we have to run it through the indirect() function as:

indirect(concatenate ($A$12,”’ 1 $A$8: $F$39°"))

Finally, in this way, we arrive at the formula we enter into cell
B28 as the Thrust for the current Time (A28) in the Trajectory
Calculations table as:

"Long expressions are split across lines in order to fit them on the page here, but you
enter it as a single expression for the spreadsheet cell.
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Another difference is that we are looking up values from a dif-
ferent sheet. To do this, we have to include the sheet name as a
prefix in the cell range specification. For example, to specify the
Thrust Profile table in the EstesC6 sheet we’ll use the expression
EstesC6!$A$8:$F$39. With this in mind, and assuming the cur-
rent time is in cell A28, we can look up the approximate Slope
entry of the Thrust Profile table using the following parameters for
vliookup():

e The value to match. We want the input to come from A28.
However, since we might drag this formula over to another
column for debugging, but still want the value from column A
we’ll use an absolute reference for the column. On the other
hand, when we drag the formula down, we want the row num-
ber of increment, so we’ll use a relative reference for the row.
Thus the reference will be: $A28.

e Range of table cells. As mentioned above, we’ll specify the
fixed-location Thrust Profile table using absolute references
as: EstesC6!$A$8: $F$39.

e Column to select. The table value we want is the Slope, in the
third column of the table, column C, so we use the value: 3.

e Approximate? As explained above, we want approximate lookup,

so we use the value 1.

e Return index? This optional true-or-false (boolean) parameter
defaults to false, which is just what we want. We won’t even
list the value so that we can export the spreadsheet in Ezcel
format if we want.

Putting this all together, we come up with the following expression
for the Slope from the Thrust Profile table for the current time:

vlookup($A28,EstesC6!$A$8: $F$39,3,1)

Similarly, we have the the following expression for the Intercept

Chapter 2

Drag

Let’s say our rocket is moving at a speed of 48.225 m/s. That’s
almost 108 miles per hour (see exercise 1). That’s pretty fast. If
you've ever stuck your hand outside a fast moving vehicle, you've
actually felt how hard the air pushes back against fast moving ob-
jects. In the field of fluid mechanics this force is called drag and if
we want to accurately estimate the trajectory of our rocket, we’ll
have to incorporate it into our calculations.

If we think about it a bit, we’ll be able to come up with a
sensible term to add to our force equation. For instance, you may
have noticed from your fast moving experiences that the faster you
move (assuming the air is more or less still), the more force you
feel from the air. In other words, the resistance will oppose your
motion and increase with increasing velocity (denoted as v). The
simplest expression that captures this is—C'v for some constant C,
but is this really all we need? What else effects the strength of the

wind pushing on an object? Think about flying a kite.

Other important factors are the size and shape of the object.
The more surface area A pressing directly into the air (we’ll call
this drag surface area), the greater the resistance. This is why a
parachute slows a fall to a non-destructive speed. Along with the
drag surface area, our drag force term should also include a constant
factor known as the drag coefficient! (' that captures the shape

thttp://en.wikipedia.org/wiki/Drag_ coefficient
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and texture of the surface moving against the air, varying from
near 0 for a polished, smoothly curved, streamlined body that cuts
through the air up to about 2 for a rough flat plate perpendicular
to the motion2.

N
Drag surfaces are the ones you
can see when looking down on

the rocket, the ones that push
against the air in flight

vin

A simple expression incorporating these factors is —ACpv, but
there is still more to consider. Let’s think about the air. Air is
a fluid that flows and has density. It flows freely (low viscosity),
so we will not need to account for the viscosity of the air (as we
would for a thick, viscous substance such as honey). Density is the
mass of a substance per unit volume. It measures the concentration
of mass and, expressed in MKS units, we’ll use it in the form of
kilograms per meter cubed (kg/m?) . The greater the density, the
more a fluid resists motions through it (in the F' = ma, push-and-
shove sort of way that it is difficult to run through a pool). Density
will vary with altitude, which will (hopefully) change rapidly along
the rocket trajectory, so we'll include air density? as the factor p(h)

2You might wonder why we don’t go from 0 to 1, but once we arrive at our final drag
term it may seem reasonable.
3The name of the Greek letter p is rho and corresponds to our letter r.
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Delay Mass (g) A5. The average mass of engines having a non-
zero delay minus the average mass of engines having a zero-
second delay: =H12-H5.

Incorporate Improved Thrust

We are now ready to incorporate our improved rocket engine thrust
model into the Trajectory Calculations table. The main idea will
be to use the current time value to look up the appropriate slope
and intercept values from the rocket engine thrust table, then plug
the time value into the slope-intercept line equation to calculate the
corresponding thrust and use that value. This is pretty complicated
compared to our previous spreadsheet work, so we’ll take it step at
a time.

We'll use the current time value as one of the parameters in the
vliookup() spreadsheet function to look up the appropriate slope
and intercept values for the line segment of the thrust profile. How-
ever, unlike when we used the function in chapter 3 to look up the
Mass using the Rocket name, here there are a few complications
that require some explanation.

First, since we’ll look the current time up in a table where we
cannot expect the exact value will be found'®, we cannot use an
exact value lookup. We’ll have to use an approximate lookup. This
requires that the table be organized with time values in increasing
order. Luckily, the thrust profile data already complies with this
requirement. Furthermore, in case vlookup() cannot find an exact
match, it will return as an approximate match the largest value
that is less than the one sought. This is why we stored the slope
and intercept values alongside the first (lesser time value) of the
thrust data points.

1Tn most cases, even when you think the values should be the same, comparisons based
on exact floating point values is a bad idea. Even though the values appear the same, they
may differ farther out in the decimals you are not actually seeing. In most cases, you want
to compare floating point numbers using some limit of preciseness, and say the numbers are
the same if their difference is less than your limit.
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(again, followed by their average). For example:

Estes C6 Engine (from www.nar.org, except total mass)

8.817 | Total Impulse (Ns) Delay(s) | Eng Mass(g)
10.800 | Propellant Mass (g) 0 23
12.200 | Remaining Mass w/o Delay (g) 0 23

1.833 | Delay Mass (g) Average(g) 23.000

3 24
3 25
3 25
5 25
5 25
5 25
Average(g) 24.833

The web page contains values you can use in the table. However,
measuring your own values will probably reflect the reality of your
circumstances more accurately, especially if you use the engines you
measure. In this spirit, ['ve listed values for some of the engines
I've measured (but, feel free to use the masses listed on the web
page instead if you choose to). The first three categories below are
input cells, the next two are derived, and the last two are output
cells.

Propellant Mass (g) A3. This value comes directly from the
rocket engine web page.

Engine Delay (s) G3:G4, G6:G11. These delay values are from
the engines I measured.

Engine Mass (g) H3:H4, H6:H11. These are the mass values I
measured for the engines I had on hand.

Average Engine Mass w/o Delay (g) H5. The average mass
of engines having a zero-second delay: =average (H3:H4).

Average Engine Mass w/Delay (g) H12. The average mass of
engines having a non-zero delay: =average (H6:H11).

Remaining Mass w/o Delay (g) A4. The average mass of en-
gines having a zero-second delay minus the mass of the pro-
pellant: =H5-A3.

19

(using functional notation that reminds us that the density p will
vary with height h). Our reasoning thus far yields the following
drag force expression: —p(h)ACpv, however ...

One final consideration will shape our drag force term. We will
base our reasoning* on dimension analysis’>. Dimension analysis
is based on the principle that expressions should have the proper
measurement units. For instance, the drag force term should have
units of force: Newtons. We start with a drag term that includes
the factors we’ve already mentioned, leaving the velocity part a bit
general:

—p(h)CpAf(v)

In other words, rather than including velocity directly as v,
we include some function of velocity f(v), that could be linear,
quadratic, or even more complicated in order to make the whole
drag force come out in units of force (Netwons). Hopefully, this
intuitively makes sense so far: twice as much drag surface area gives
twice as much resistance to motion. The same goes for density:
twice as much density gives twice as much resistance to motion.
The drag coefficient is just a knob that we dial up to 2 for surface
shapes that catch the wind, and down to 0 for shapes that glide
through the air freely.

Now comes the tricky part. If we measure air density in units
of kg/m?, drag surface area in m?, and make Cp dimensionless (no
units, just a number), leaving aside for the moment the units of
f(v), then the product of units so far is:

Cp(WCpAf(w) — Mg M0,
m m

However, we want our drag term to be a force and have units of
force. Specifically, we want the units to be Newtons, or equivalently,

4http://en.wikipedia.org/wiki/Drag_ equation
Shttp://en.wikipedia.org/wiki/Buckingham _%CF %80 _theorem
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kg - m/s*>. So we have kg/m, but we want kg - m/s* and we
haven’t yet taken into account the factor f(v). However, since we
measure velocity in units of m/s, when we multiply by some power
of velocity v, we multiply the units by a power of m/s. It is now
easy to see that we can get units of force by changing f(v) into v,
multiplying kg/m by m?/s%. Furthermore, we follow a convention
in fluid mechanics of introducing the factor of 1/2 to make the
velocity factor v?/2 look like a kinetic energy term without the
mass®. Thus, our final drag term becomes:

2
—P(h)CDA%

This drag term is the improvement we’'ve been looking for.
When we add it into our modified force equation from the last
chapter, our new and improved force equation becomes:

2
F,—mg— p(h)CDA% = ma

Once we solve for acceleration, we can use the resulting equation the
same way we did in the last chapter, only with even more accurate
results. Let’s divide through by the mass of the rocket to find out
how to calculate the acceleration:

F, p(h)CpAv?
—_— g — ———
m 2m

What to do about the air density? Rather than go into all of
that right now, let’s simplify and assume a constant air density
near ground level of approximately” 1.2 kg/m3. As we generate
numbers, we’ll have to keep in mind that the drag will be slightly
less than calculated as the rocket climbs higher, since air density
deceases with increasing altitude.

Shttp://en.wikipedia.org/wiki/Kinetic _energy: In classical mechanics, the kinetic en-
ergy of a non-rotating rigid body is given by E = mv?/2, where E is kinetic energy, m is
mass, and v is velocity. Notice that this has the same dimensions, in the MKS system it
would be kg - m?/s%, as work which is force times distance or W = F - d.

Thttp:/ /www.engineeringtoolbox.com /air-altitude-density-volume-d _195.html
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as we drag the formula down the table, but the second cell
reference is relative, changing the range to include all previous
rows as we drag.

Total Impulse (Ns) A2. We'll need to accumulate all of the im-
pulse values into the total impulse. We'll add them all up by
entering the following formula in cell A2: =sum(E8:E39).

Engine Mass

We'll use a simple model of engine mass that consists of only two
parts: the propellant mass, and the mass of the remaining (non-
propellant) part of the engine. The propellant mass is entered
directly from the web page. The remaining mass is complicated
by the fact that there is a significant difference in mass depending
on whether or not an engine has a delay (zero-second delay en-
gines are a few grams less). Also complicating the remaining mass
portion are the slight variations with differing delays and rocket en-
gine manufacturing batches (which probably also effect propellant
mass).

To deal with the added complication of variation in remaining
mass, we’ll construct a table and average some data. The table will
consist of two columns, one for the delay in seconds, another for the
total engine mass. The first few rows of the table contain values
for zero-second delay engines (followed by their average), and the
remaining rows of the table contain values for engine with delays
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above. It is their average. It is almost as easy to calculate as the
extreme values. This sort of geometric and algebraic manageability
is one of the things that makes linear models nice to work with.
Now, let’s write it in more general symbolic notation using the
points (x1,y1) and (xg, yo):

(g —z1)yr + (2 — 1) (Y2 — 1)/2 = (22 — 1) (Y2 + 11) /2

That’s about as far as we can go symbolically, but it is far
enough to help us generate impulse values for successive points in
the thrust profile. We’ll translate this into a formula using relative
references and store the result in the row of the first point. Even
though they are all outputs, I only color the background of Total
Impulse as an output cell.

Impulse (Ns) E8:E39. We'll translate our symbolic expression
for impulse described above into a formula using relative cell
references and enter it into cell E8 as: =(A9-A8) * (B9+B8) /2.

Check that the displayed value is similar to the numeric one
we calculated above. When you drag the formula down the
table, check that the Impulse cells toward the end of the table
are zero when the corresponding Thrust value in that and the
next row are both zero (or missing). Check that the displayed

values are similar to the numeric values shown back on page
62.

Used Impulse (Ns) F8:F39. When we incorporate engine mass
into the spreadsheet, we’ll need the accumulated impulse used
up to the time of the Thrust Profile table row. In order to
form this value, we sum the values in previous rows of the
table. (We insist that the Impulse value in the row of labels,
cell E7, be zero to simplify the formula.) We can then enter
the following formula into cell F8 as: =sum($E$7:E7).

Notice that the first cell reference is absolute, staying constant

21

To calculate the drag acceleration for our rocket from chap-
ter 1 we’ll need the drag surface area, which is approximately
0.00226356m? (see exercise 2), and we’ll guesstimate the drag coef-
ficient as 0.7 (close to the value for a long cylinder®, but somewhat
more streamlined). This yields the following drag acceleration term

—p(h)CpAv*
2m - 2(0.143)

—1.2(0.7)(0.00226356) 5 oce oo o

We are finally ready to generate some numbers. We'll add an-
other column to the table to help us keep track of the contribution

of the drag term and round off values at 4 decimal places:

Time || F./m — g || —p(h)CpAv?/2m a v h
(5) || (m/s) /) | o) || omgs) | om)
0.00 32.1514 0.0000 32.1514 | 0.0000 | 0.0000
0.01 | 32.1514 0.0000 32.1514 | 0.3215 | 0.0000
0.02 32.1514 -0.0007 32.1407 | 0.6430 | 0.0032
0.03 32.1514 -0.0027 32.1486 | 0.9645 | 0.0096
0.04 32.1514 -0.0062 32.1452 | 1.2860 | 0.0193
0.50 32.1514 -1.5999 30.5515 | 15.8190 | 3.9085
1.48 32.1514 -11.3142 20.8372 | 41.4630 | 32.6395
1.49 32.1514 -11.4295 20.7219 | 41.8786 | 33.0542
1.50 -9.8066 -11.5446 -21.3513 | 41.8786 | 33.4709
1.51 -9.8066 -11.6597 -21.4664 | 41.6651 | 33.8897
1.52 -9.8066 -11.5411 -21.3478 | 41.4504 | 34.3063
4.73 -9.8066 -0.0001 -9.8068 | 0.0339 | 92.3012
4.74 -9.8066 0.0000 -9.8067 | -0.0642 | 92.3015
4.75 -9.8066 0.0000 -9.8066 | -0.1622 | 92.3008
4.76 | -9.8066 0.0002 -9.8065 | -0.2603 | 92.2992

With this table of numbers before us, let me point out a few
interesting properties. First and foremost we notice that the drag
contribution does indeed increase at higher velocities, reducing the

8http://en.wikipedia.org/wiki/Drag_ coefficient
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acceleration by over a third. At maximum velocity the effect on
velocity is not that pronounced, only about 20 percent. However,
the overall effect of drag on the apogee (maximum height) through
the reduced velocity is dramatic. Chapter 1 exercise 7 asks you to
calculate the apogee without drag, giving a value close to 154.75
meters. Here we find a value close to 92.3 meters, about 60% of the
value without drag. The velocity reduction of 20% accumulates to
make a dramatic 60% difference in the maximum height.

Next notice the apogee values, predicted to occur sometime near
4.74 seconds. The velocity is so small, with relatively small accel-
eration, that the rocket seems to just hang in the air for a moment.
Furthermore, as the velocity crosses from positive to negative, the
drag contribution crosses from negative to positive, a sort of sec-
ondary effect to reduce acceleration and thereby resist motion. The
increasing drag would be important if we wanted to know (see ex-
ercises b and 6) how long the rocket would take to hit the ground
without a parachute, streamer, or other mechanism to slow the fall,
but this is something we try to avoid so that we don’t break any-
thing (including the rocket). This brings us to the next key point:
the apogee occurs approximately 4.74 — 1.50 = 3.24 seconds after
the engine burn cuts off, so that a 3 second delay is just about
right® for parachute deployment (or other drag increasing mech-
anism). The time from engine cut-off until apogee is known as
coast time. We want to match the rocket engine delay as closely
as possible to the coast time to achieve maximum height and avoid
damaging the parachute. See exercise 9 of chapter 1.

Finally, let’s talk about calculating all these numbers. While it
is theoretically possible to calculate them all by hand (or with a
handheld calculator), my personal preference is to set up a spread-
sheet to do it all, though you could also write a program to generate
them. In the next chapter we’ll take a look at creating a spread-
sheet to automate the calculations, but first, try your hand at some
of the following exercises.

9The engines with the closest delay to 3.26 seconds that I can easily obtain are either
C6-3 or C6-5 engines.
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4.826 N

0.946 N

0.031 s 0.092 s

For the non-constant thrust profile, we could break the time
period into smaller and smaller sections, using an appropriate con-
stant thrust value for each section. However, with each smaller
subdivision we are approximating ever more closely the area under?
the thrust profile. This is the geometric reasoning that suggests we
want the Newton-second area under the thrust profile curve for the
impulse of the time period.

To find the impulse using our diagonal thrust profile line, we’ll
want the area of the lower rectangle plus the area of the trian-
gle having the diagonal as hypotenuse (half the area of the upper
rectangle). We can find the impulse for this time period as:

(0.092 s —0.031 5)0.946 N + (0.092 s — 0.031 5)(4.826 N — 0.946 N)/2

= (0.092 s —0.0315)(4.826 N + 0.946 N)/2
= (0.0615)(5.772 N)/2

= (0.0615)(2.886 N)

= 0.176046 Ns

You may notice from either the geometry or the calculation, that
this value is half way between the two extreme values we calculated

9The accumulation of the area under the graph of a function like the thrust profile is
known as integration in more advanced mathematics such as Calculus. Using tools from
Calculus allows more general, accurate, and efficient work with functions of physics and
rocketry, but is beyond the scope of this pamphlet.
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table are zero, even though there are no corresponding Thrust
values.

Intercept (N) D8:D39. We'll translate our symbolic expression
for the intercept described above into a formula using relative
cell references and enter it into cell D8 as: =B8-C8+*A8.

Again, when you drag the formula down the table, check that
the 2nd row entry is close to the approximate value we calcu-
lated above.

Engine Impulse

To estimate the amount of fuel used (or remaining) at a given time,
we’ll need to calculate the impulse inherent in the thrust profile
data. To do this, we’ll calculate the impulse between pairs of thrust
points and store the resulting impulse values in the Impulse column
for the first point of each pair. Let’s look at this in more detail.

We'll start, as before, with the following pair of successive thrust
measurement points: (0.031s, 0.946 N) and (0.092s, 4.826 N). If
the thrust were constant, say 0.946 Newtons for the whole time
period, then we’d have an impulse of (0.092 s — 0.0315)0.945 N =
0.057706 Ns for the time period. On the other hand, if the thrust
were a constant 4.826 Newtons for the whole time period, we’d have
an impulse of (0.092 s — 0.031 5)4.826 N = 0.294386 Ns for the
time period. In each case, the value would just be the area under
the curve.

EXERCISES 23

Exercises

1. Use the following unit equivalences to convert 48.225m/s into
units of miles per hour (mph).

100ecm = 1m
2.54em = 1lin
12in = 1 ft
5280 ft = 1mi
60s = 1nun
60min = 1hr

[Hint: Let’s look at a conversion of 100 cm into feet. Since
2.54em = lin, and 12in = 1ft, we know that 1 = 1in/2.54cem,
that 1 =1 ft/12in and that we can always multiply anything
by 1 and keep it equal to itself, so we can multiply in a way
that units cancel, converting cm to ft as follows:

lin  1ft 100

1 . . —
00em - e em 12in ~ 2.54.12

ft

Use the same idea to convert 48.225 m/s by converting both
meters to miles and seconds to hours all in one long product
of velocity and conversion factors. |

2. Calculate the area of a rocket that has a cylindrical body with
a diameter of 1 + 51/64 in with 4 fins that measure 1/8 in
thick and would make a 5 4 11/16 in diameter circle if you
rotated the rocket around its body-cylinder axis (see the di-
agram on the next page). |[Hint: The area of a circle is 772
To convert square inches into square centimeters, multiply by
(2.54 em/in)?. To convert square centimeters to square me-

ters, multiply by (1m/100 cm)?]
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Suppose a rocket with a drag surface area A = 0.00226 m?
and a drag coefficient C'p = 0.7 is moving with a velocity
v = 42.086 m/s. Using an air density p = 1.2 kg/m, cal-
culate our estimate of the drag force pCpAv?/2. Now divide
by the rocket mass m = 0.143 kg to find the corresponding
acceleration.

Suppose you make a small change in the shape of the rocket
that reduces the drag coefficient by 10%. Do you think the
effect on maximum velocity will be greater than, less than, or
equal to 10%? Why? How about the effect on apogee? Why?

Noticing from the table on page 21 that the rocket is expected
to coast for about 3.24 seconds from a velocity of approxi-
mately 42m/s, do you think the speed of the rocket would be
more, equal, or less than about 42 m/s after falling for 3.24
seconds without a parachute (or similar device)? Why? [Hint:
Consider the acceleration on the way up and the way down.
Is it the same?|

There is an interesting condition for the velocity that occurs
when the drag exactly cancels the gravitational force pulling
the rocket down. We call this the terminal velocity.

(a) What can you say about the change in velocity of the
falling rocket at terminal velocity?

(b) Write an equation that sets the drag force term equal to
the gravitational force pulling the rocket down by equating
the gravitational force —mg to the drag force pCpAv?/2
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let’s review this, rewriting it more symbolically, so we’ll know how
to incorporate it into the spreadsheet more easily.

We started with two consecutive points (x1,y1) and (22, y2).
We then found the proportion of the change in vertical-axis values,
1o — 1, to the change in horizontal axis values, o — 1, and formed
the slope of the line as the ratio M = (y2 — y1)/(22 — 1) that
converts horizontal units to vertical units.

To find the intercept B of the line, we’ll simply plug our first
point (0.031 s, 0.946 N) and the approximate slope, 63.607 N/s,
into the slope-intercept equation for a line, y = Mx + B, and solve
for B to find an approximate value of -1.029:

0.946 = 63.607-0.031+ B
0.946 = 1.974607+ B
-1.029 =~ B

Symbolically, we write this as: y; = Mx1+B or B =y — M.

This gives us the formula for B in terms of M and the first point
(x1,41), and we are ready to incorporate this into the EstesC6 en-
gine thrust sheet. Furthermore, we have already calculated some
numeric values to check against. We’ll enter the formulas into the
first row of the thrust table for the engine and then drag the formu-
las down the table. Notice in our symbolic expressions, that the y’s
correspond to thrust, and the x’s correspond to time. Even though
the following cells are outputs, I leave their backgrounds uncolored.

Slope (IN/s) C8:C39. We'll translate our symbolic expression for
slope described above into a formula using relative cell refer-
ences and enter it into cell C8 as: =(B9-B8)/ (A9-A8).

When you drag the formula down the table, check that the
2nd row entry is close to the approximate value we calculated
above. Also, notice that the Slope cells toward the end of the
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we’ll find the slope M and intercept B for the pairs of points and
store these values in the spreadsheet alongside the 1st point of the
pair.

For example, consider the successive thrust measurement points
(0.031s,0.946 N) and (0.092s, 4.826 N). First, let’s find the slope
M as the proportion of thrust in Newtons to number of seconds
for this time-section of the thrust curve. We'll need to know not
only an increment of time in seconds, but also the corresponding,
equivalent” increment of thrust in Newtons for this line segment
section of the thrust curve:

(0.092 s, 4.826 N) K

3.880 N

(0.031s, 0.946 N) | —— | — ¥

p— 0.061 s

From the diagram we can see that for this section of the curve,
3.880 Newtons is proportional to 0.061 seconds, so that we can
find the slope M as the ratio 3.880 N/0.061 s or approximately
63.607 N/s. M is a sort of conversion® from seconds to Newtons
for this specific line segment. Before we move on to the intercept,

"This equivalence of increments gives us a conversion factor from seconds to Newtons for
this part of the curve in much the same way as equivalent measurement units did in exercise
1 of chapter 2.

8The slope M is a conversion factor of increments. With increments, the origin (location
of zero) of seconds or Newtons does not matter. If what you are calling time 0 and 1 seconds
is what I am calling time 10 and 11 seconds, then we can still both agree that the increment
is 1 second even if our watches are not synchronized. Once we account for the origin with
an offset B, we get the conversion from seconds to Newtons graphically depicted by the line
segment here.

EXERCISES 25

(on the way down there is no minus sign since the drag
pushes up).

(c) Plug the numbers from the text into the equation.

(d) Solve the equation in part (c) by manipulating the equa-
tion to first get v? by itself on one side of the equation,
then take the square roots of both sides to solve for v.
Make sure you include measurement units in the equa-
tion and carry them all the way through so that you have
meaningful units for the terminal velocity solution.

7. How would increased humidity affect the drag?
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Mass cells (discussed later) form the input cells of the rocket engine
sheet, color their background accordingly. The remaining cells we’ll
talk more about in the following sections.

Time (s) A8:A39. These values (except for the first set of zeros
and later Time values as described above) also come directly
from the web page.

Thrust (N) B8:B39. These values (except for the first set of zeros
as described above) also come directly from the web page.

Generate Derived Values

The values derived from the engine data fall into three categories:
Thrust Profile, Engine Impulse, and FEngine Mass. We'll look at
each of these in order.

Thrust Profile

In order to take advantage of the thrust at each time increment
of our trajectory calculations, we’ll need to find th thrust for each
time increment. However, our time increments do not match the
thrust data points we’ve gathered. To resolve this problem, we’ll
take the approach of using a line segment to span the distance
between two sample points. Then we’ll use the line to find values
of thrust for times between two data points. Finding appropriate
values between data points (especially in tabulated data) is known
as interpolation, and since we are using a line to find the values
between the points, it is known as linear interpolation®.

Recall the equation of a line, y = Mx + B, from exercise 11 of
chapter 1. For each pair of successive thrust measurement points,

6 Another way to think of this is as follows. Think of the thrust profile (the thrust curve)
as a time-varying function: given a time, it yields a thrust value. We approximate the thrust
function in pieces (or piecewise), with each piece being a line segment. We end up with a
piecewise linear approximation of the thrust function.
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should appear. Make the selections so that the data is deposited
in the appropriate number of rows by two columns (in our Estes
C6 case, cells A8:B31). Now go back up to cells A8:B8 and enter
zero in each (this is missing in the data sets I've seen). Select the
cell range A8:E39 and format for numeric values with three decimal
places. Finally, enter Time values (to the next biggest tenth of a
second, incrementing by a tenth of a second) for the remaining cells
of the table so that we have values for the full table. Our use of the
viookup() spreadsheet function will require Time values in every
slot of the table, starting with zero and increasing as you move
down the table.

Estes C6 Engine (from www.nar.org, except total mass)
8.817 | Total Impulse (Ns)
10.800 | Propellant Mass (g)
12.200 | Remaining Mass w/o Delay (g)
1.833 | Delay Mass (g)

Time(s) | Thrust(N) | Slope M | Intcpt B | Impls(Ns) | Used(Ns)
0.000 0.000 30.516 0.000 0.015 0.000
0.031 0.946 63.607 -1.026 0.176 0.015
0.092 4.826 108.723 -0.177 0.347 1.191
1.834 2.993 | -123.692 229.785 0.028 8.781
1.847 1.325 | -101.923 189.577 0.028 8.809
1.860 0.000 0.000 0.000 0.000
1.900 0.000 0.000 0.000
2.000 0.000 0.000 0.000

We'll have a separate sheet for each of the different engines we
want to model in the Trajectory spreadsheet, and look up the sheet
by the name on the tab. It is important that we put the thrust
data in the same place for each of the different engines sheets,
so that when we look things up based on the engine name, we
find the values we're looking for in the same place on each sheet.
Furthermore, the remaining spreadsheet structure should also be
the same for each.

The Time and Thrust values together with some of the Engine

Chapter 3

Automate via Spreadsheet

In order to be able to automate calculations, check results, and
recognize and fix problems, it really is necessary to understand the
calculations involved with trajectory estimations, and to do enough
of them by hand that you get a good feeling for what is going on.
However, when you have a set of thousands of detailed calculations
that change each time you change a parameter, there is no substi-
tution for some sort of automation such as a spreadsheet. Think of
a spreadsheet as a special purpose programming language designed
specifically for organizing, calculating, and displaying numbers in
the easiest general-purpose way possible. Rather than just leave
you to it, discovering the highlights and pitfalls on your own, I'd
like to offer the following advice to help you get started.

I'll try to keep the discussion here at the right level, but if it
seems that I'm overstating the obvious feel free to skim the text
(or skip it altogether) and get down to the business of automating
your trajectory estimates. On the other hand if it seems that I
am going too fast or talking in gibberish without explaining what’s
going on, you may have to ask someone for help, crack open either
a spreadsheet manual or tutorial, then come back here and give it
another go.

At the most basic level, a spreadsheet is a matrix (a two di-
mensional table of rows and columns) of cells. The rows are la-
beled with numbers, starting with 1 in the top-most row, and the

27
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columns are labeled with letters, starting with A in the left-most
column. Each cell is specified with a column and row, such as D3,
and can display either text or a numeric value. You can think of
each numeric cell as a calculator that can hold either a number,
or the result of a calculation specified by a formula.

celr|D3 1 Row| 3
Clolumpn D

Formulas can reference (use the numeric values from) other
cells in the spreadsheet. For example, you can enter a formula into
cell C3 that adds the values of cells A1 and B2 by moving the cursor
over the C3 cell, left-clicking it, and typing in: =A1+B2. This cell
will now display the sum of the numeric values of cells A1 and B2.
Changing the value in cell A1l or B2 will change the result that
is displayed in cell C3. Other cells can use the value cell C3 for
their calculations. This is a good point to do exercises 1 and 2 to
familiarize yourself with what we’ve covered so far if you haven'’t
used spreadsheets before, or you've only used one a few times and
you’d like to practice.

Now, let’s talk about the different kinds of cells that we’ll use
to organize our spreadsheet and calculations. There will be input
cells, where we enter numbers that we've measured (such as the
mass of the rocket in grams, diameter of the body in inches), or text
values that we’ll use to specify information (such as the name of the
rocket or the type of engine (C6-3)). It will also be useful to have
pre-processed inputs, results of conversions or recombinations of
inputs, that we’ll call derived input cells containing such things
as drag surface area, and rocket mass. Next, we’ll have the trajec-
tory calculation cells that generate various numbers that form

LOAD ENGINE THRUST DATA 61

0.231 7.381
0.248 6.151
0.292 5.489
0.370 4.921
0.475 4.448
0.671 4.258
0.702 4.542
0.723 4.164
0.850 4.448
1.063 4.353
1.211 4.353
1.242 4.069
1.303 4.258
1.468 4.353
1.656 4.448
1.821 4.448
1.834 2.933
1.847 1.325
1.860 0.000

Now, open your trajectory estimate spreadsheet and notice the
tabs at the bottom of the page. Each tab corresponds to one
spreadsheet. Usually there are three sheets per file (named Sheet1,
Sheet?2, and Sheet3, but you can Insert, Append, or Remove sheets
by right-clicking a tab and making the appropriate selection. Right-
click on the trajectory estimate sheet tab and Rename it to Tra-
jectory or something similar. Next right-click on the tab to the
right and Rename it to something like EstesC6. Notice that this
also makes the sheet active (brings it to the front so you can enter
data).

Copy the data to the clipboard as follows. Make the window
with the rocket engine thrust active. Select the thrust data (left-
click in the upper left corner of the displayed numbers, drag down to
the lower right corner while holding the click, then release). Copy
it to the clipboard (select Edit, then Copy from the PDF viewer
pull-down menu).

Finally, paste the data into the spreadsheet as follows. Make
the spreadsheet window active. Position the cursor over the A9 cell,
right-click, and select Paste. A Tewxt Import Dialog box (or similar)
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appropriate viewer on your computer screen. The resemblance of
the thrust profile plot to the burn front progression graph on page
4 gives us confidence in our theoretical model.

Advance to the second page of the document that lists the thrust
profile as one pair of numbers per line. The first number is the time
in seconds and the second is the thrust in Newtons. You’ll copy
and paste these values into your spreadsheet in the next section.

If you are using a rocket engine for which you can’t find a de-
tailed thrust profile, don’t despair. There are options, but they
require more work. One possibility is to adapt the theoretical model
we developed above to describe the engine you are using so that the
resulting trajectory estimates are improved*. The main problems
will be knowing how to adapt the model and knowing how close to
reality the model is. This brings us to a second option, which is,
to measure the thrust profile yourself, under the supervision of a
qualified person (check with a local middle or high school science
teacher, they will probably want to set it up so that students can
take part or observe).

Load Engine Thrust Data

We’ll assume the thrust profile data for the engine, an Estes C6
engine in our example case, is displayed in a window on you com-
puter and that you can copy it into your clipboard. Again, the
data should be in a format that has the thrust profile as one pair of
numbers per line, the first being the time in seconds and the second
being the thrust in Newtons:

.031 0.946
.092 4.826
.139 9.936
.192 14.09
.209 11.446

OO o oo

4If you do this, I'll be interested in the details.
5Again, if you take this route I'll be interested in the details.

29

the trajectory estimates using spreadsheet formulas. In addition
we’ll have post-processing cells containing spreadsheet formulas to
calculate important results such as apogee, maximum velocity and
such, that we’ll call output cells.

In addition, to help ourselves and others use the spreadsheet,
we’ll use comment cells containing either formatting text or useful
information about the spreadsheet. Furthermore, to make things
even easier, we'll color the background of cells depending on their
type. The scheme I use is green for input cells, yellow for derived
input cells, orange for output cells, clear background (white) for
comment and intermediate calculation cells, and gray for headings
and titles.

Before we go any farther, I should also say a couple of things
about specific spreadsheet programs since they differ slightly. The
instructions in the chapter work with the Gnumeric! spreadsheet,
version 1.8.2. However, the same instructions should also work
with either Microsoft Excel?, or OpenOffice Calc® with the following
differences that matter to us:

e Function names in Gnumeric are in lower case, but in Fxcel
and Calc are in upper case.

o Function parameters are separated with commas in Gnumeric
and Fzcel, but with semicolons in Calc.

e The vlookup() spreadsheet function in Gnumeric has an op-
tional 5th parameter that Ezcel doesn’t, but we don’t use it
anyway. We’ll look at this function more closely in the Derived
Inputs section below.

For example, we’d enter a formula such as =sum(A1,A2,C3:C5) for
Gnumeric, but for Ezcel we’d enter =SUM(A1,A2,C3:C5), and for
Calc we’d enter: =SUM(A1;A2;C3:C5).

Thttp://en.wikipedia.org/wiki/Gnumeric
2http://en.wikipedia.org/wiki/Microsoft_Excel
3http://en.wikipedia.org/wiki/OpenOffice.org_ Calc
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Input Cells

It is better to keep the input cells in the upper left part of the
spreadsheet, the default home position*, because this is the area
that will show up in the window when you open the spreadsheet.
On the next page is an example of what [ am talking about and
we’ll go through it all in detail below, but first let me explain about
the antiquated inches measuring units.

Most of my measurement tools are from my wood-shop where I
do most of my measuring in inches and fractions of inches. However,
this being a spreadsheet, meters or centimeters or whatever, are
only a short conversion away (take a look back at exercise 1 in
chapter 2). Furthermore, a measurement such as 1+51/64 inches
can be entered just as it is typed, provided you precede it with an
equals sign (=) to tell the spreadsheet you are entering a numeric
expression. It will then show up in the spreadsheet as 1.797 if the
cell is formatted to show 3 digits of precision.

Rocket Trajectory Estimation Spreadsheet

[ | | | | |

Rocket Properties Fins Drag

Mass | Drag Body | Num | Thick | Dia | Area Area
Name (2) Coeff | Dia (in) (in) (in) | (in"~2) | (m~2)

RedPhoenix 143 0.700 1.797 4.000 | 0.125 | 5.688

RedDevil 283 0.700 1.797 4.000 | 0.125 | 5.688

Flight Combination Trajectory Constants

RedPhoenix | Rocket 1.20000 | Air Density (kg/m~3)

EstesC6 Engine 9.80665 | Gravitational Acceleration (m/s~2)

0.01000 | Time Increment (s)

9.00000 | Total Impulse (Ns)

6.00000 | Average Thrust (Ns)

Let me say a few words about formatting. In order to have
your table look like the one in this pamphlet, you’ll need to do

4The <Ctrl><Home> key combination will take you to the home position in the spread-
sheet.
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How can we incorporate all of this into improved trajectory es-
timates? At this point, there is no way around the use of a spread-
sheet or computer program, and the best way for us to proceed is
to use the spreadsheet constructed in exercise 5 of chapter 3. The
general plan is as follows.

We’ll gather data for the engine of interest. Load it into our
spreadsheet. Generate the derived values that we’ll need. Mod-
ify the Thrust column of the spreadsheet to use tabulated thrust
data via interpolated table lookup. Modify the Acceleration with-
out Drag and Drag columns of the spreadsheet to use adjusted mass
(due to burned propellant). Finally, we’ll compare results from the
more accurate engine model to results of the constant-thrust model.

Gather Engine Data

We start with actual engine thrust profiles of the rocket engine of
choice. Thanks to the National Association of Rocketry?, the thrust
profiles for many of the commercially available rocket engines are
readily available on the internet at the following URLs:

e http://www.nar/org/
e http://www.thrustcurve.org/
e http://www.modelrockets.us/thrustcurves.php

e http://www.redarrowhobbies.com/
estes_model rocket engines.htm

For example, navigate your way on http://www.nar.org/ to the
Rocket Motor Information link in the menu on the left margin of
the page, then to the NAR Certified Motors link in the pop-up
menu, then scroll down the table and click the C6 link for motors
manufactured by Estes. This should bring up a PDF file in an

3http://www.nar.org/
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| Time (mm) | Surface Area (mm~2) |

7 314
8 201
9 170
10 170
11 170
12 170
13 170
14 170

Let’s take a look at that graphically:

Burn Front
500.0

200.0 /
]

300.0

200.0

Surface Area (mm ~2)

100.0 A

/

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Progression from Ignition Point (mm)

0.0

Recall the reasoning that the surface area of the burn is pro-
portional to the engine thrust and suddenly you are looking at the
rough shape (an estimate using our simplistic theoretical model)
of the engine thrust profile! It isn’t nearly the constnat engine
thrust profile we used in our trajectory calculations of the previous
chapters. Furthermore, as the fuel burns, the engine mass decreases
and further affects the trajectory calculations.
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some formatting. First, from the main menu, select Format, then
Column, then Standard Width and enter the value 66 (points).
Next, with the Rocket Properties table rows starting at cell A6
and extending though cells 19 (we write this cell range as A6:19),
select the cell range D6:19 as follows. Move the cursor over cell D6,
left-click and hold the click while you drag the cursor over to cell 19,
then release. The selected range of cells D6:19 should be highlighted
in a different color with a bounding box around the perimeter.
Now that you have selected the range of cells, right-click inside the
box and select Format Cells from the pop-up menu. Be sure the
Number tab is selected, then select Number as the Category, scroll
the number of Decimal places to 3, and click OK . Similarly, select
the cell range J6:J9, and set the number of decimal places to 5.

Let me also say a word about the abbreviated labels. I kept
them short so the table would fit on this page. In the spreadsheet
they can be longer and more descriptive. Just as important as
descriptive names are the units of the measurement the spreadsheet
is designed to use. There is an old saying in Computer Science:
Garbage in, garbage out. So, let’s help ourselves remember what
sort of values the numbers represent by including units in the labels.

Rocket Properties

As you probably already have guessed, the rocket property cells
will be one of the most important interfaces for anyone using the
spreadsheet. They should be prominent, well marked, and easy to
understand. We’ll organize these as a table for various rockets, as
once you are involved in rocketry, you will probably have more than
one rocket you’d like to analyze and keep all in one spreadsheet.
Let’s use a table with three rows to start.

Name (string) A6:A8. Be consistent with your names as they
are searched against using the vlookup() spreadsheet function
(see Flight Combination below).
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Mass (g) C6:C8. The mass in grams of the rocket including any-
thing it will carry on its journey.

Drag Coefficient (unitless) D6:D8. This really depends on the
shape of your rocket, but as mentioned in chapter 2, I use 0.7.
This value is used in the trajectory table to calculate drag.

Body Diameter (in) E6:E8. Vernier calipers work well to mea-
sure diameters like this, but if you don’t have a set and your
rocket has a constant diameter all the way down to bottom,
just use a ruler at the bottom of the rocket. If you have a more
complicated rocket that has several different vertically aligned
body diameters, measure the largest one. This measurement
is used in the calculation of the drag surface area.

Number of Fins (unitless) F6:F8. The number of fins around
the body of the rocket. We’ll need this to calculate the drag
surface area.

Fin Thickness (in) G6:G8. The thickness of the fin. The thicker
the fin, the more drag surface area.

Fin Diameter (in) H6:H8. The diameter of the fins measured as
follows. When you spin the rocket along its vertical axis, the
points of the fins furthest away from the axis make a circle. We
want the diameter of that circle (see the diagram for chapter 2
exercise 2). If there are an even number of evenly spaced fins,
this is easy to measure right from the rocket with with vernier
calipers or a ruler. For the case of three fins, see exercise 9.

Flight Combination

These specify to which rocket and engine combination the trajec-
tory calculations apply. Both of these fields are names that are
used as parameters in the vlookup() spreadsheet function. To save
yourself grief, be consistent with names and spelling.

Rocket (string) All. The name of the rocket to lookup in the
Rocket Properties table.
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proportional to the area of the burn surface. It turns out that the
surface area of a sphere is proportional to the square of its radius
(4772 to be precise), just as the perimeter of a circle is proportional
to its radius (27r).

We'll take snapshots of the burn front as it progresses from igni-
tion onward, with the snapshots equally spaced in time so that burn
surface advances about one millimeter for each snapshot. Now, the
inside diameter of a C6-X rocket engine casing is about 12 millime-
ters, so let’s take a look at how the surface area develops, measuring
time in millimeters of burn, up until the burn front hits the cylinder
walls. Note that 47 is approximately 12.566:

| Time (mm) | Time"2 (mm~2) [ Surface Area (mm"2) |

0 0 0

1 1 12.6
2 4 50.3
3 9 113.1
4 16 201.1
) 25 314.2
6 36 452.4

At this point, the burning spherical surface starts to run out of
fuel at the cylinder walls of the rocket engine casing, and decreases
in size steadily, approaching a curved, disk-shaped plunger of fire
moving up the inside of the rocket engine cylinder. From our di-
agram, we can guess that the time from hitting the cylinder walls
until there is only a disk shaped plunger of fire will take about 2
or 3 snapshots. At this point, the 1/2 sphere surface area is about
226.2 square millimeters, but the area of a disk with a 6 millimeter
radius is 762 or about 3.14 - 36 = 113.04 square millimeters. Let’s
say the curved disk has a surface area that is the average of these
two, about 170 square millimeters. Then we might reasonably fill
in the rest of the table as follows:
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Notice the shallow hole in the bottom of the rocket engine. This
is where the igniter is inserted and ignites the fuel (a substance
similar to black powder or gun powder, only packed and bound
into a cylindrical solid). The fuel starts burning at the ignition
point and spreads from there in a uniform way.

The engine thrust results from the mass of the gasses produced
(approximately equal to the mass of the fuel) accelerating out the
bottom of the rocket engine (F' = ma). The gasses are produced
so fast that they push in all directions. The place with the least
resistance is the bottom of the engine where the gas accelerates out.
The shape of the exhaust hole (called a venturi) is important to the
properties of the hot gas exhaust jet and thereby the functioning
of the engine.

Newton’s law of equal action and reaction tells us that this
accelerating matter (hot exhaust gas) is transformed into an equal
force pushing the rocket engine in the opposite direction of the gas
mass acceleration. Furthermore, we can now see that the force is
in direct proportion to the amount of fuel burning, which is an
expanding ball of fire.

Let’s assume the fuel burns in a homogeneous way (equal amounts

and speeds in all directions) so that the resulting burn surface (or
burn front) is spherical in shape, at least at first. Furthermore,
we’ll assume that the amount of force produced at a given time is
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Engine (string) A12. Eventually, your spreadsheet will use this
to look up engine properties, but for now it is just informative.

Trajectory Constants

We use these constants in our calculations and could code them
directly into the table. However, it is much easier to change the
values once here, rather than change them (correctly) everywhere
they are used throughout the spreadsheet (without missing any).
These values might change at some point (on a humid day, on top
of a mountain, or if you need some really accurate estimates).

Air Density (kg/m~3) F11. As mentioned in chapter 2, we'll
use 1.2 kg/m?>(air at sea level and low humidity).

Gravitational Acceleration (m/s~2) F12. As in chapters 1
and 2, we’ll assume the rocket is close to the earth’s surface
and use 9.80665 m,/s>.

Time Increment (s) F13. As in chapters 1 and 2, let’s use 0.01
seconds.

Total Impulse (Ns) F14. This is the total impulse or thrust sup-
plied by the rocket engine. In our immediate case of a C6-X
engine, it is 9 Newton seconds.

Average Thrust (IN) F15. This is the average thrust supplied by
the rocket engine. In our immediate case of a C6-X engine, it
is 6 Newtons.

Initial Conditions

Even though these two numbers are located in the Trajectory Cal-
culations table below, they really are inputs that specify the initial
motion of the rocket and deserve a description here. More specifi-
cally, to calculate the trajectory of the rocket we need to know both
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where it is initially, and how it is already moving before we start
to apply velocity and height increments. In most cases, we’ll enter
zeros for both, but in case you investigate multistage rocketry (see
exercise 8), you'll enter different values here for successive stages.

Trajectory Calculations Initial Velocity F28. The initial ve-
locity of the rocket in meters per second. It may be more
convenient to enter this when you create the Trajectory Cal-
culations table below, but don’t forget to use a colored back-
ground for the cell.

Trajectory Calculations Initial Height G28. The initial height
of the rocket in meters. Again, it may be more convenient to
enter this when you create the Trajectory Calculations table
below, but don’t forget to use a colored background for the
cell.

Chapter 4

Engine Thrust and Mass

Now that we’ve covered the basic calculations, drag, and spread-
sheets, we are ready to fine tune our trajectory estimates even
more. Using the spreadsheet you constructed for exercise 5 of the
last chapter, let’s take a look at the difference 25 grams (about the
mass of a C6-X engine), will make in the trajectory. Here are some
of the output cell values:

| Rocket Mass (g) | 143 168 |
Apogee Height (m) || 93.1199 | 75.9002
Apogee Time (s) | 4.7600 | 4.5000
Maximum Velocity (m/s) || 42.0846 | 35.3644

As the engines get bigger (D, E, and beyond), their mass become
a more significant factor in the trajectory. Also, remember that
long before apogee, it is the mass of the fuel that has burned into
gas and been left behind in Newton’s third law of motion (action
and reaction') that creating the rocket engine thrust.

At this point we need to understand how the fuel burns in more
detail to come up with a better model of engine thrust and mass?.
Let’s take a look at a typical rocket engine in the figure below.*

!One wording of Newton’s third law is: To every action there is an equal and opposite
reaction. Here, action means momentum (the product of mass and velocity, in symbols
mv), and the law is more widely known in modern physics as the conservation of momentum.

2Thanks to Keith Packard for explaining this to me

=
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Derived Inputs

These are cells that use spreadsheet formulas to determine their nu-
meric value. Some will use numeric expressions, others will use the
vlookup() spreadsheet function. Either way, the values in the cells
reference the input cells, but are themselves inputs to the trajectory
calculations. We isolate them here to help simplify calculations and
make them more comprehensible.

Rocket Trajectory Estimation Spreadsheet

Rocket Lroper’ties: | | | Fins ’ Arag
Mass | Drag | Body | # | Thick | Dia | Area Area
Name (g) Coeff | Dia (in) | (in) | (in~2) (m~2)
3.509 0.00226
3.509 0.00226
Flight Combination: Trajectory Constants:
Rocket Air Density (kg/m~3)
Engine Gravitational Acceleration (m/s"2)
Time Increment (s)
Total Impulse (Ns)
Average Thrust (N)
Derived Trajectory Inputs:

0.14300 | Rocket Mass (kg)

0.70000 | Drag Coefficient (unitless)

0.00226 | Drag Surface Area (m~2)

| | |

Rocket Properties

We already have all the inputs required to determine the drag sur-
face area, so let’s let the spreadsheet calculate it from the compo-
nents, then convert it into MKS units.

At this point we’ll need a technique I call dragging formulas.
To start, you'll enter the formulas into the the first row of the
table: cells 16 and J6 as described below. Next, select the cell
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range 16:J6. At this point you should have a box around the 16 and
J6 cells with a square black dot at the lower right hand corner of
the box. Move the cursor over the black dot (it should change to a
cross-hair), then left-click and drag down until the I and J columns
are highlighted for the remaining two rows of the table. Release
the left mouse button and the spreadsheet should have copied the
formulas into the remaining rows of the table for you. Try exercise
4 to become more familiar with dragging formulas and absolute
vs relative references. If all this seems a bit too much to digest
(even after a few tries), perhaps you can find a tutorial for your
spreadsheet program to help you work through and become more
familiar these sorts of actions.

Drag Area (in~2) I6:I8. For this cell we'll need some basic ge-
ometric formulas. We'll treat the drag surface area of the
fins as rectangles that have a length that starts at the rocket
body diameter (cell E6) and extends to the fin diameter (cell
H6). Notice that this is only half the distance H6-EG6, so that
when we multiply by the fin width (cell G6) the area of a sin-
gle fin rectangle will be G6%(H6-E6) /2. Multiplying by the
number of fins (cell F6) gives us the area of all the fins as
F6xG6* (H6-E6) /2.

Now we’ll add in the area due to the rocket nose cone, as-
suming that it eventually takes on the area of the circular
cross-section of the widest part of rocket body. We'll use the
following formula for the area of a circle of radius r: 7r?. We
have the diameter of the rocket body in cell E6, and can get
the value of 7 from the function pi(), so we can calculate the
area of the body as: pi()*(E6/2) 2.

For the final formula, we simply add together the two areas:
=pi () *(E6/2) ~2+F6xG6* (H6-E6) /2. Notice that since all of
the input dimensions are measured in inches, the resulting area
is in square inches.

Drag Area (m~2) J6:J8. To convert from square inches to square
meters, we generate the conversion factor using the following

EXERCISES 53

the final point A of the triangle, move the anchor of the
compass from point B to point C and swing an arc that
intersects the previous arc to form point A. (See diagram
on next page.)

B Cc

Measure the diameter of the circle passing through the
3 points: Find the center of the circle, then insert the
compass anchor at the center and adjust so that the tip
reaches the three points as closely as possible. Draw the
circle, and measure the diameter with a ruler. [Hint: Eu-
clid Book IV Proposition 5: Extend the perpendicular
bisector of AB and AC until they intersect at circle’s cen-

T X
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for the D12 engine into the Trajectory Constants table,
enter RedDevil and EstesD12 for the Flight Combination
values, and make sure the initial velocity and height are
zero. Scan through the numbers and check that they make
sense. Record the Time, Velocity, and Height values at
the time the engine cuts out. (Use the values from the row
after the last non-zero thrust value, since that is where
the last non-zero thrust is used.)

(b) Now, enter the Total Impulse and Average Thrust values
for the C6 engine into the Trajectory Constants table,
enter RedPhoenix and EstesC6 for the Flight Combination
values, and enter the velocity and height you collected in
part (a) for the initial velocity and height. Again, scan
through the numbers and check that they make sense.
Record the apogee height and maximum velocity as results
for the two stage flight. Sum the first stage engine cut-out
time and the second stage apogee time as the flight time
for the two stage flight.

9. In this exercise, we investigate measuring the fin diameter of a

3-fin rocket (assuming the fins are the same size and symmet-
rically spaced around the rocket body). You'll need a ruler,
a compass that can open to 6 inches, and a sheet of 8.5x11
blank paper.

(a) Mark out the equilateral triangle consisting of the outer
points of each fin (marked A, B, and C). If you don’t ac-
tually have such a rocket, you’ll first have to construct
an equalateral triangle as follows. Orient the paper so it
is wider than tall, draw a point B on the paper about 2
inches from the left edge and an inch up from the bot-
tom edge. Open the compass to about 6 inches, place
the anchor at point B and with the compass tip mark a
small arc to the right. Pick a point on the arc about an
inch up from the bottom edgeand label it C. Without re-
moving the compass anchor, swing it up to make an arc
that crosses half way between points B and C. To mark
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equivalences:

lin = 2.54cem
100ecm = 1m

These yield the following conversion factors:

2.54 cm 1= 1m
lin 100 em
which we multiply together to get the conversion factor for
inches to meters as:
2.54 cm 1m 2.54m
Lin  100cm  100in
We can easily do the math on the numeric part of this expres-

sion, reducing it to 0.0254 by shifting the decimal point two
places to the left (once for each factor of 10 in the denomina-

1 =

tor). Now to convert square inches to square meters, we need
to square the inches-to-meters conversion factor: (0.0254)2.
We use this in combination with the drag area in square inches
in cell 16 to construct the formula for drag area in square
meters: =I16x0.0254"2 (remember that exponentiation takes
precedence over multiplication).

Derived Trajectory Inputs

These cells are more about selecting values than calculating them.
They mainly extract the pertinent rocket properties from the ta-
ble based on the name of the Rocket Name in Flight Combination
section.

Rocket Mass (kg) A22. This cell is a combination lookup and
conversion. We look up the mass of the rocket using the
vlookup()® spreadsheet function. The v is for vertical (search-
ing across rows, hlookup() searches horizontally across columns).

5ylookup for Gnumeric, VLOOKUP for both Microsoft Excel and OpenOffice Calc. For
information on the available functions, their parameters, or use, consult the help feature of
your spreadsheet.
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The parameters we’ll use are as follows:

e Value to match. We want the input to come from A11.
However, we specify this cell using the absolute refer-
ence $A$11 rather than the relative reference A1l (see
exercise 4). This is not crucial in this context, but is a
good habit when referring to fixed-location input cells
rather than row or column-relative intermediate calcu-
lation cells.

e Range of table cells. We'll specify the fixed-location
input table using absolute references as: $A$6:$J$8.

e Column to select. The table value we want is the Mass,
in the third column of the table, column C, so we use
the value: 3.

o Approrimate? This is an optional true-or-false
(boolean) parameter with 0 representing false, and 1
representing true. We want an exact match, so we sup-
ply the value 0 here.

e Return index? Again, this is an optional true-or-false
(boolean) parameter that defaults to false, which is just
what we need. We won’t even list the value so that we
can export the spreadsheet in Ezcel format if we want.

Finally, once we have the mass in grams from the Rocket
Properties table, we must multiply it by the conversion fac-
tor 1 kg/1000 g to convert it into kilograms (MKS units):
=vlookup ($A$11,$A$6:$J$8,3,0)/1000.

Drag Coefficient (unitless) A23. This is similar to the Rocket
Mass above, the main differences being that there is no con-
version and rather than column C, this time we want the value
in column D: =vlookup($A$11,$A$6:$J$8,4,0).

Drag Surface Area (m~2) A24. Similar to the Drag Coefficient
above, except that rather than column D, this time we want
column J: =vlookup($A$11,$A$6:$J$8,10,0).
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(g) Select cell D3, drag the formula down to cell D6, and
observe the resulting values and formulas.

(h) Select cell D2, drag the formula down to cell D5, and
observe the resulting values and formulas.

(i) Select cells D4, D5, and D6 (D4:D6), drag the formulas to
cells E4:E6, and observe the resulting values and formulas.

5. Create a spreadsheet to reproduce the trajectory calculations
as described in this chapter.

6. Use the spreadsheet you constructed in exercise 5 to find the
effect on apogee of +1% variation in the following parameters:

(a) Total Impulse

(b) Rocket Mass

(c) Drag Coefficient
(d) Drag Surface Area,
(e) Air Density

7. Extend the spreadsheet in exercise 5 by adding output cells
that display the engine cut-off time and the coast time.

8. In this exercise, you estimate the trajectory of a multistage
rocket (a rocket that has multiple parts, or stages, each part
with its own engine), by adjusting the spreadsheet inputs.
Stages are numbered in the order of firing. Now, refer to the
table of Input Values on page 30. Use the RedPhoenix as the
second stage, and enter values for a new rocket called the Red-
Devil that has the same properties as the RedPhoenix, except
for the increased mass of 115 grams (total mass of 258 grams)
for the first stage booster. Furthermore, assume that the Red-
Devil will use an Estes D12-0 engine with 17 Newton-seconds
of total impulse for the first stage, and an Estes C6-5 engine
for the second stage.

(a) First, enter the RedDevil properties into the Rocket Prop-
erties table, the Total Impulse and Average Thrust values
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numeric values are displayed.

(b) Now left-click on the column label B, select Column Width,
enter (or scroll to) the value 60, click OK, and, again, no-
tice how the display changes.

(c) Now left-click on the column label B, select Format Cells,
select Numeric, scroll the Decimal places to 3, click OK,
and notice how the display changes.

(d) Again, left-click on the column label B, select Format
Cells, select Numeric, this time scroll the Decimal places
to 8, click OK, and notice how the display changes.

(e) Finally, put the cursor over the dividing line between the
column B and column C labels (it should become a double-
headed, horizontal arrow), left-click and drag the size of
column B right about an inch. Notice how the display
changes.

4. Cell reference column letters and row numbers can be either
relative or absolute. The difference shows up when dragging
a formula. A relative reference, such as C3, when dragged:
right will become D3, left will become B3, up will become C2,
and down will become C4. The column letter, row number,
or both may be made absolute by preceding it with a dollar
sign ($). For example, $C$3 is an absolute reference that
when dragged does not change. Try the following in a new
spreadsheet:

(a) Enter the value 5 in cell Al.
(b) Enter the following values in cells B2:B6: 10, 10, 5, 17, 9.

(c) Enter the following values in cells C2:C6: 10, 10, 10, 20,
10.

(d) Enter the following formula in cell D2: =$A$1+100%$B2/$C2.
(e) Enter the following formula in cell D3: =$A$1+100%B3/C3.

(f) Select cells D2 and D3, drag the formulas to cells E2 and
E3, and observe the resulting values and formulas.
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Trajectory Calculations

Primarily, these cells contain formulas to calculate the time-specific
trajectory estimate numeric values. For the purposes of this section,
let’s assume that the trajectory calculations span the cell range
A28:G1028 as follows:

Time | Thrust | w/o Drag Drag w/Drag | Velocity | Height

(s) () Acc(m/ss) | (m/ss) | Acc(m/ss) (m/s) (m)
0.000 | 6.000 32.1514 | 0.0000 32.1514 0.0000 | 0.0000
0.010 | 6.000 32.1514 | 0.0000 32.1514 0.3215 | 0.0000
0.020 | 6.000 32.1514 | -0.0007 32.1507 0.6430 | 0.0032
0.030 | 6.000 32.1514 | -0.0027 32.1486 0.9645 | 0.0096

Notice that we have allotted 1001 rows for this table. Using
a time increment of 0.01 seconds, this is about 10 seconds worth
of trajectory information. That will be plenty for the exmples we
examine here in the text. To format your table to look like the
one in this pamphlet, select cells A28:B1028 and format them as
numbers with 3 decimal places, then select cells C28:G1028 and
format them for 4 decimal places.

Time (s) A28:A1028. It is traditional to start the launch at t=0,
so enter 0 into cell A28. For the following cell, A29, we’ll
use a formula that adds the Time Increment to cell A28. In
this formula, we’ll need the reference to cell A29 to be rela-
tive, but the reference to the time increment to be absolute so
that when we drag the formula down the table, each cell adds
the fixed-location time increment to the time value in the row
above to get the current time. To get this to work, we enter
the following formula into cell A29: =A28+$F$13.

Next, we’ll drag the formula down the table to fill column A.
Put the cursor over cell A28 and left-click it, then release it.
Now, put the cursor over the square dot in the lower right
hand corner of the box around cell A29, left-click it and hold
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the click while you drag the formula down the table. Once the
cursor reaches the bottom of the visible cells, keep scrolling
and the pane should shift to allow the drag to proceed to new
cells. It is a bit tricky to get the feeling for this, and it is
much easier with a track-ball than a mouse, but there is no
problem if you accidentally release the drag before you get to
the bottom of the table: just drag the last cell that was copied
down further in the same fashion.

If everything worked, you should see the time incrementing
down column A by the time increment in cell F13. Try chang-
ing the Time Increment trajectory constant and verify that
the entries in column A change accordingly (then change it
back).

Thrust (N) B28:B1028. With our exceedingly simple model of a

rocket engine, we assume that at time zero the engine starts
supplying its constant thrust and continues to do so until all
of its thrust is used up. One way to enter this into the spread-
sheet is to use the Total Impulse (cell F14) and Average Thrust
(cell F15) Trajectory Constants together with some logic in the
following form: if (time * average thrust) <= total thrust,
then supply average thrust, otherwise supply 0 thrust. Luckily,
we can enter this into the first row thrust cell B28 almost as is
using the ¢ f() function: =if (A28+$F$15<=$F$14,$F$15,0).

Notice that we use absolute references for the constants and a
relative reference for the time so that when we drag the for-
mula down the table the constant references remain fixed, but
the time is specific to the row of the cell.

Scroll the spreadsheet and verify the numbers in column B.
You should see 6 in the columns where time <= 1.5 seconds,
and 0 for times greater. This should continue to be true even
if you change the Time Increment. On the other hand, if you
change the Average Thrust to 11 what happens?

Acceleration without Drag (m/ss) C28:C1028. Without drag,

this is the simplified expression for acceleration we found in
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reference as follows. Move back to the B4 cell using the
up arrow key, then start to enter the formula by pressing
the “=" key. This time, type in the letters for the function
average, then press the “ (“ key to start the parameter list.
Now use the up-arrow key twice to move to cell B2, then
press and hold the <shift > key, then press the down-arrow
key to move to cell B3. Notice that the entry area above
the cells contains the value “=average(B2:B3”. Finally,
press the “)” key, and the <enter> key to complete the
formula. Notice that the cell displays the average of the
two values. Move back to the B4 cell using the up arrow
key. Notice that the formula is now: “=average(B2:B3)".

2. This exercise shows one advantage to using the average()

spreadsheet function. Perform each part of exercise 1 above,
with the following exception: after each of the parts above,
repeat the these actions:

(a) After entering each formula, insert a row between the two
values in cells B2 and B3 by: left-clicking on the row 3
number on the left-hand side of the cells, and selecting
Insert Row(s).

(b) Next enter the value 12.75 into the new cell B3 and observe
the effect on the cell containing the average. Is the average
value correct for the three numbers?

(c) Finally, delete the row by: left-clicking on the row 3 num-
ber on the left-hand side of the cells, and selecting Delete
Row(s), and again observe the effect on the cell containing
the average.

Why might you want to use the average() function rather
than code the arithmetic expression yourself?

. This exercise gives you some practice adjusting the display of

numeric values.

(a) Start with a new spreadsheet and enter the following val-
ues in cells B2, B3, and B4: 1.5, 2, =1/3. Notice how the
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Exercises

1. In this exercise you create a spreadsheet that averages 2 values

in various ways. To start, enter the following values into cells
B2 and B3: 13.5 and 15.75.

(a) Enter the formula directly in cell B4: =(B2+B3)/2.
Notice that the cell displays the average of the two values.

(b) Enter the formula using the arrow keys to select
cell references as follows. Move back to cell B4 with the
up arrow key. Start the formula by pressing the “=" key,
then the “(* key. Now, enter the cell references by using
the up arrow key twice (until the B2 cell is highlighted),
pressing the “+” key, then the down arrow key (until the
B3 cell is highlighted), then follow with the “)” key, the
“/” key, the “2” key, and the <enter> key. Notice that
the cell displays the average of the two values. Move back
to the B4 cell using the up-arrow key. Notice that the
formula is the same as in part (a).

(c) Enter a formula using the sum/() spreadsheet func-
tion using the arrow keys to select a cell range
reference as follows. Move back to the B4 cell using the
up arrow key, then start to enter the formula by pressing
the “=” key. This time, type in the letters for the function
“sum”; then press the “(“ key to start the parameter list.
Now use the up arrow key twice to move to cell B2, then
press and hold the <shift > key, then press the down-arrow
key to move to cell B3. Notice that the entry area above
the cells contains the value "=sum(B2:B3”. Finally, press
the “)” key, the ”/” key, the “2”7 key, and the <enter>
key to complete the formula. Notice that the cell displays
the average of the two values. Move back to the B4 cell
using the up-arrow key. Notice that the formula is now:
=sum(B2:B3) /2.

(d) Enter a formula using the average() spreadsheet
function using the arrow keys to select a cell range
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chapter 1: F,/m — g. We have the engine Thrust in column
B, the Rocket Mass in A22, and Gravitational Acceleration in
F12, so our formula for cell C28 is easy: =B28/$A$22-$F$12.

Now drag the formula down the table, and scroll through the
spreadsheet to verify the numbers. Just to be sure, change the
rocket mass and verify that the numbers change as expected
(then change it back).

Drag (m/ss) D28:D1028. This is the most complicated formula

of the table, not just because it has many components, but
also because there is a certain logical problem that must be
avoided or we’ll end up with what is known as a circular ref-
erence. A circular reference is the spreadsheet equivalent
of an infinite loop in programming. The problem is that we
must calculate the drag using the velocity. However we calcu-
late the velocity using the acceleration, which includes drag.
So where do we start, and when do we stop? Like many subtle
things, the timing is crucial!

Here is the way we’ll break it down. We calculate the entries
in a row for a given time as an estimate of the conditions that
will exist at the specified time. In order to get to get the new
estimates, we use the values from the previous row as condi-
tions that are true and constant right up until the time of the
current row. This is not exactly a valid assumption, but is
closer to being true with smaller and smaller time increments.

Let’s see how this works. Using a Time Increment of 0.01
seconds, to get the Velocity increment for time 0.51, we use
the Acceleration at time 0.50 multiplied by 0.01. Similarly, to
calculate the Drag at time 0.51, we use the Velocity at time
0.50 that we assume is in effect right up to the time 0.51.

Now let’s code this into the spreadsheet. We’ll enter a zero in
cell D28, and then find a formula for cell D29 that uses the
Velocity in row 28. The formula will give the magnitude of the
value in our expression for drag that we calculated in chapter
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2: p(h)CpAv?/2m. We'll deal with the minus sign shortly. Time | Thrust | w/o Drag | Drag| w/Drag | Velocity | Height
In the mean time we just start plugging in cell references for (s) (N) | Acc(m/ss) | (m/ss) | Acc(m/ss) (m/s) (m)
values, being careful to use absolute references for constants 0.000 | 6.000 32.1514 ] 0.0000 32.1514 0.0000 | 00000
’ ) & ) 0.010 | 6.000 32.1514 0.0000 32.1514 0.3215 | 0.0000
and a relative reference for velocity: 0.020 | 6.000 32.1514 | -0.0007 | 32.1507 | 0.6430 | 0.0032
0.030 | 6.000 32.1514 | -0.0027 32.1486 0.9645 | 0.0096

$F$11x$A$23+$A$24¥F28+F28/ (2% $A$22) . 2 2
. . . 1.480 6.000 32.1514 | -11.3142 20.8372 | 41.4630 | 32.6395
One final complication is fact that the drag opposes the ve- 1.490 | 6.000 321514 | -11.4205 | 20.7219 | 41.6714 | 33.0542
locity (which is not just a number, but a number and a di- 1.500 | 0.000 ~0.8066 | -11.5446 | -21.3513 | 41.8786 | 33.4709
rection). This means that whatever the sign of the velocity, 1.510 | 0.000 -9.8066 | -11.6597 -21.4664 | 41.6651 | 33.8897
the drag must have the opposite sign. Luckily, this is an issue
which has come up in spreadsheets before and so there is a 4720 | 0.000 -9.8066 | -0.0004 -9.8070 0.1320 | 92.2998
£ t . () hich ret the si ¢ tit L1E 4.730 | 0.000 -9.8066 | -0.0001 -9.8068 0.0339 | 92.3012
un.c .10n stgn() which re urn.s € sign ol a quantity as - .or 4.740 | 0.000 -9.8066 | -0.0003 -9.8067 | -0.0642 | 92.3015
positive values, -1 for negative values and 0 for zero. Using 2750 1 0.000 29.8066 | -0.0001 298066 | -0.1622 | 92.3008
this, we can get the opposite sign of Velocity in cell F28 as: 4.760 | 0.000 -9.8066 | 0.0000 -9.8065 | -0.2603 | 92.2992
sign(F28). So we end up with our formula in cell D29 as: 4770 | 0.000 ~9.8066 | 0.0000 ~9.8062 | -0.3584 | 92.2966
4.780 | 0.000 -9.8066 0.0002 -9.8058 -0.4564 | 92.2930
=—Sign(F28) *$F$11x$A$23+x$A$24xF28%xF28/ (2x$A$22) . 4.790 | 0.000 -9.8066 0.0005 -9.8053 -0.5545 | 92.2885

Again, drag the formula down the table. Right now, all the
values will be 0, since we have not entered values for Velocity
yet. However, once we do establish the Velocity values, scroll
through the spreadsheet to check that the Drag numbers make
sense. Check to see what happens if you change the Drag Co-
efficient, the Number of Fins, or Body Diameter, but be sure
to change them back.

Acceleration with Drag (m/ss) E28:E1028. Now that we have
both Acceleration without Drag and Drag taken care of, it is an
easy matter to add them together with a formula for cell E28
as: =C28+D28. Drag the formula down the table. With zero
values in the Drag column, the numbers should be the same
as for Acceleration without Drag. Once we establish values for
Velocity, come back and check these values.

Velocity (m/s) F28:F1028. Similar to Drag above, we’ll calcu-
late the velocity for a specific time using the previous row’s
entries. This will work only for the second and subsequent
velocities. We'll enter 0 in cell F28 (see Initial Conditions on
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code. Familiarity gets in the way of seeing what is actually written, page 33), then enter a formula into cell F29 and drag it down
and intent gets in the way of seeing what is really specified. If the table. The formula will multiply the constant T@me Incre-
you can, get someone else to take a look at your formulas. This ment by the previous row’s Acceleration with Drag and add it
even works well if the person checking does not know what you to the previous row’s Velocity: =$F$13*E28+F28.

are calculating (as long as they ask lots of questions and make you . o
You should now be able to verify that the velocity increases

explain why you used the formulas you did). ’ s . .
steadily to the point at which the engine cuts out, and then

These tips may come in handy: steadily decreases becoming negative at the apogee. You should
also be able to verify that the drag becomes more negative as
the velocity increases, goes to zero at apogee, and then be-
comes positive as the velocity becomes negative, increasing as

the velocity becomes more and more negative.

o Verify the formulas by: selecting the cell with the formula,
placing the cursor at the end of the formula in the entry bar at
the top of the page, and step through the formula with the left

arrow key. As you do, Gnumeric will highlight the boundary Height (m) G28:G1028. Similar to Velocity, we’'ll calculate the
in red of each cell that is referenced when the cursor is on the Height for a specific Time using the previous row’s entries.
cell reference. FExcel will highlight all of the cell boundaries Again, this will only work for the second and subsequent Ve-
with different colors. This will help you visually verify that locity entries. We'll enter 0 in cell G28 (see Initial Conditions
you have the cells you intended. on page 33), then enter a formula® into cell G29 and drag it

down the table. The formula will multiply the constant Time
Increment by the previous row’s Velocity and add it to the
previous row’s Height: =$§F$13+«F28+G28.

e Focus your attention on key places where you know either what
the values should be, or what things are likely to go wrong.

e Use a calculator to check the numeric value of a cell you sus-
pect is wrong, and trace the error back to either the formula,
spreadsheet function, or one of the cells being referenced. This
is a technique known as error identification.

You should now be able to verify that the height increases to
the point at which the velocity becomes negative (apogee) and
appears to change very slowly there due to the small velocities

near apogee.
e Break down complicated formulas into simpler ones that can

be more easily checked by adding columns of cells to help track
intermediate values.

Here are some key numbers that may help you check that your
spreadsheet is working like mine. If you find a problem with my
numbers, let me know!

5Did anyone notice that you can just drag the formula for the first calculation of velocity
from cell F29 to the first calculated cell for height G29 rather than typing it all in and
possibly making a mistake?
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Output Cells

These cells collect some of the most interesting information from
the trajectory calculations.

Trajectory Estimates

92.3015 | Apogee(m) 302.8264 | (ft)
4.7400 | Apogee(s)
41.8786 | Max Velocity (m/s) | 93.6797 | (mph)

Apogee (m) F22. It is easy to search the Height column for the
largest value using the spreadsheet maz() function:
=max (G28:G1028).

Apogee (ft) 122. To convert meters to feet (see exercise 1 chapter
2) we multiply by the conversion factor 100/(2.54 - 12):
=$F$22%100/(2.54%12).

Apogee (s) F23. This formula is complicated by a couple of new
functions: match() and index(). We first use match to find
the index of the apogee within the trajectory table’s Height
column via: match($F$22,G28:G1028,0).

The third parameter, 0, specifies that we want an exact match.
We then use the index value returned by match() to look up
the corresponding Time value in column A using the indez()
function: =index(A28:A1028 ,match($F$22,G28:G1028,0)).

Maximum Velocity (m/s) F24. Search the Velocity column for
the largest value: =max (F28:F1028).

Maximum Velocity (mph) 124. Convert meters per second to
miles per hour (see exercise 1 chapter 2):
=$F$24%x60%60%100/ (2.54+12x5280).
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Debugging

With luck, this chapter has given you enough guidance to start
automating rocket trajectory estimate calculations. However, when
dealing with a computer, you come face to face with the potential
for frustrating problems communicating in an exquisitely limited
and restricted language. If you get one tiny, little, thing, wrong,
... the spreadsheet may not understand what you mean, and may
not even be able to point you in the right direction”. In the worst
case, it will not even tell you there is a problem, and you’ll go
about your business of assuming that the numbers showing up in
your spreadsheet are correct.

There are steps you can take to assure yourself that the spread-
sheet really is doing what you want, but it takes some extra work
and patience. Essentially, you check and test that everything is
working as designed. I've included verification steps to take as you
build the spreadsheet, but you can use the same steps even once the
spreadsheet is built. However, it is easier to check things as you go.

One vluable tool at your disposal is that you have in this pam-
phlet the numbers for the calculations as they should be. You can
use them to check your own spreadsheet by plugging them in and
check that you get the outputs listed here. This is one of the most
basic testing strategies: use a known configuration as a test case
and check against an expected output.

Another strategy that is used is a code walk-through. In our
case the computer code is not only the set of spreadsheet formulas,
but also where in the spreadsheet the formulas are placed. Use the
spreadsheet program itself to view the formulas behind the numbers
and visually verify that they make sense. It is usually the case that
the person who wrote the code is not the best person to check the

"When computers were constructed with electro-mechanical relays, bugs (flying insects)
could, hypothetically, fly around and be trapped by a closing relay arm, preventing electrical
current flow and a resulting mistake in computer function. Computing errors came to be
known as bugs, and the terminology stuck. Removing mistakes, of course, is commonly
known as debugging.



